

CO₂ rich vents in Costa Rica: mantle volatiles behind the volcanic front

Tobias P Fischer¹, Reika Yokochi², Neil C Sturchio³, B. Mack Kennedy⁴, Carlos Ramirez⁵

¹University of New Mexico, USA, ²University of Chicago, USA, ³University of Illinois at Chicago, USA, ⁴Lawrence Berkeley National Laboratory, USA, ⁵Universidad de Costa Rica, Costa Rica

E-mail: fischer@unm.edu

Here we report the first analyses of gas discharges from CO₂-rich wells and springs located behind the volcanic front in Costa Rica. We collected gas samples from hydrothermal springs, dry CO₂ vents (30C) and CO₂ wells. Samples contain >87mol% CO2, with the majority of samples >95 mol% CO2 and well samples at >98% CO2. Other gases are CH₄ (to 0.3 %), N₂ (0.5 to 11 %), O₂ (to 0.7 %), H₂ (0.004 to 0.26 %), Ar (0.003 to 0.25 %), He (to 0.015 %). All but one sample have significant ⁴He enrichment relative to ³⁶Ar and ²²Ne [F(⁴He) 7 to 1120] and have air corrected 3 He/ 4 He ratios from 5.3 R_A to 7.7 R_A. δ 13 C values of CO₂ range from -0.29 to -4.3 ‰, indicating mixing between mantle and carbonates. CO₂/³He ratios range from from 3.3 x 10⁹ to 1.6 x 10¹⁰. CO₂-N₂-He abundances of well samples place them in the mantle field (CO₂/N₂ = 80 to 200) whereas spring samples have lower CO₂/N₂ ratios that imply crustal contamination or water-gas fractionation. N₂-He-Ar abundances place most samples in the mantle field. Spring samples have heavier noble gas (Kr, Xe) abundances similar to air-saturated water and suggest fractionation during degassing. Low ⁴He/⁴⁰Ar* for average crustal (and mantle) U,Th/K suggest He-Ar fractionation. Based on CO₂-He systematics the median carbonate (L), sediment (S) and mantle (M) C contents are 68%, 6%, and 26%, respectively with a L/S of 12. The L and S components of these samples are lower than the Costa Rica average (L= 82%, S=9%) and the M component is significantly higher than the volcanic front average (M=10±3%) (Shaw et al., 2003, de Leeuw et al., 2007). Therefore, these samples represent volatiles with the highest proportion of mantle CO₂ sampled to date in Central America. The L/S ratio is higher than that of Central America (9.7) and the world (6) average (Shaw et al., 2003). We interpret samples to represent volatiles from a region in the mantle wedge that has experienced the least contribution of subducted CO₂ and N₂ in Central America, likely the result of sediment off-scraping and slab devolatilization. We did not determine the CO2 flux from this region, but the commercial plant alone produces about 3 x 10⁹ mol CO₂/yr, about 0.1% of the MORB flux. Future work on global volatile emissions should include these sources of mantle derived CO₂.

de Leeuw GAM et al. (2007) EPSL 158:132-146 Shaw AM et al.(2003) EPSL 214:499-5