大雪火山群,御鉢平カルデラ形成期における 珪長質マグマ溜まりの進化過程

佐藤鋭一^{*,**}·和田恵治*

(2012年2月24日受付, 2012年10月29日受理)

Evolution of Silicic Magma Chamber for Caldera-forming Eruption of Ohachidaira in the Taisetsu Volcanic Group, Central Hokkaido, Japan

Eiichi SATO^{*,**} and Keiji WADA^{*}

The 30ka caldera-forming eruption of Ohachidaira started with plinian pumice fall and pyroclastic flows. The deposits contain pumice (SiO2=64.9-68.4 wt.%), scoria (SiO2=56.6-59.0 wt.%), and banded pumice. This study examined the evolution processes of silicic magma chamber through mineralogical and petrological analyses of the eruption products. Three types of plagioclase phenocrysts such as An-rich (type A : An70-90), An-poor (type B : An36-56), and intermediate (type C: An56-70) were observed. Type-A plagioclase phenocrysts were further classified into two sub-types on the basis of MgO content in the cores; type A1 (MgO>0.05 wt.%) and type A2 (MgO<0.05 wt.%). Type-A1 and type-A2 plagioclase phenocrysts were derived from mafic magma, type-B plagioclase phenocrysts were derived from silicic magma, and type-C plagioclase phenocrysts were derived from hybrid magma formed by the mixing of mafic and silicic magmas. The pumice mainly contains type-B plagioclase phenocrysts with rare type-A2 and type-C plagioclase phenocrysts. The scoria contains type-A1, type-A2, and type-B plagioclase phenocrysts with rare type-C plagioclase phenocrysts. These assemblages in the products can be explained by the mixing of magmas. Initially, mafic magma including the type-A1 plagioclase phenocrysts was injected into the bottom of the silicic magma chamber, and a density-stratified magma chamber was formed. The first mixing occurred at the interface of mafic and silicic magmas, and a hybrid magma was formed at the interface of the two magmas. During the period from the mixing to the eruption, type-A2 plagioclase phenocrysts were formed due to the diffusion of MgO in type-A1 plagioclase phenocrysts. Whereas, type-C plagioclase phenocrysts were derived from hybrid magmas. During the eruptions, the lower-layer magmas (hybrid and mafic magmas) were sucked into the conduit due to the viscous force of the upper-layer silicic magma. Outer part of the conduit, silicic and hybrid magmas mixed. The mixed magma contained type-B, type-A2, and type-C plagioclase phenocrysts. Whereas, in the center of the conduit, the mixing of the three magmas (mafic, hybrid, and silicic magmas) occurred, and the mixed magma containing the type-A1, type-A2, type-B, and type-C plagioclase phenocrysts was formed.

Key words: Taisetsu volcanic group, Ohachidaira caldera, magma mixing, magma chamber, plagioclase

1. はじめに

島弧火山では噴火前にマグマ混合が生じている例が多く (Eichelberger, 1978, 1980; Sakuyama, 1979, 1981), その 場合, マグマは均質または不均質に混合した状態で噴出

*〒070-8621 旭川市北門町 9

北海道教育大学旭川校地学教室

Earth Science Laboratory, Hokkaido University of Education at Asahikawa, Hokumon-cho 9, Asahikawa 070-8621, Japan する. また, マグマ混合は噴火のトリガーになり得るば かりでなく (Sparks *et al.*, 1977; Blake, 1981; Pallister *et al.*, 1992), マグマ供給系の進化過程に影響を与える (Tomiya and Takahashi, 1995; Chertkoff and Gardner, 2004; Toya *et*

神戸大学大学教育推進機構 Institute for Promotion of Higher Education, Kobe University, Tsurukabuto 1-2-1, Nada, Kobe 657-8501, Japan

Corresponding author: Eiichi Sato e-mail: esato@people.kobe-u.ac.jp

^{**} 現所属: 〒 657-8501 神戸市灘区鶴甲 1-2-1

al., 2005; Nakagawa *et al.*, 2011). したがって, マグマ混合 は, 噴火に至る過程, マグマ溜まりの進化において鍵と なる重要な現象である.

マグマ混合過程を理解するために、これまで、岩石学 的な手法を用いて、噴出物からマグマ混合に関与した端 成分マグマの化学組成、温度等を推定する研究が行われ てきた (Tomiya and Takahashi, 2005).また、鉱物の累帯 構造プロファイルからマグマ混合のタイミングを明らか にする研究も行われている (Nakamura, 1995; Druitt *et al.*, 2012).しかし、珪長質マグマへの苦鉄質マグマの注入 が噴火のどのくらい前に生じ、その後、珪長質マグマ溜 まりがどのような進化を経て噴火に至るのかについて十 分に検討した例は多くない.

本研究の対象となる御鉢平カルデラの噴出物は、マグ マ混合の証拠を多く保持している。また、カルデラ噴火 の最盛期には岩石学的に異なる2種類の火砕流が流出し ているという特徴を持つ(佐藤・和田, 2005; 若佐・他, 2005, 2006). 若佐・他 (2006) は、山麓に堆積する噴出 物について岩石学的な手法を用いてマグマ供給系の推定 を行い、その概要を明らかにした.本研究では、御鉢平 カルデラ噴出物の噴出順序に関する最近の成果(佐藤・ 和田, 2010, 2011) をもとに、マグマ供給系の再検討を 行った. その結果、2種類の火砕流を流出した活動にお いてそれぞれ2端成分マグマの混合が生じていることが 明らかとなった.本研究では、混合端成分マグマの温度、 含まれる斑晶鉱物の種類を推定した。また、苦鉄質端成 分マグマの注入のタイミング、注入から噴火に至るまで の珪長質マグマ溜まりの進化過程を明らかにしたので報 告する.

2. 地質概説

大雪火山群は,北海道の中央部に位置する第四紀火山 群であり (Fig. 1), 20 以上の火山体から構成される複合 火山である (国府谷・他, 1966, 1968; 勝井・他, 1979). 大雪火山群の活動は噴出物の K-Ar 年代値から約 100 万 年前から開始したとされる (新エネルギー・産業技術総 合開発機構 (NEDO), 1990).活動開始以来,数 10 万年 間は主に溶岩流や溶岩ドームを形成する比較的穏やかな 噴火が続き,複数の火山体を形成した (勝井・他, 1979). その後,約3万年前に爆発的な噴火が生じ,御鉢平カル デラを形成した (勝井・他, 1979).御鉢平カルデラの形 成以降,再び溶岩を主体とする活動となり,旭岳などの 火山体を形成した (勝井・他, 1979).旭岳は大雪火山群 の中で最も新しい火山体であり,約1~2万年前に活動 を開始したと考えられている (大沼・和田, 1991).旭岳 の主なマグマの活動は約3千年前までには終了したと考

Fig. 1. Index map of Taisetsu volcanic group.

えられており、その後は水蒸気爆発が生じている(佐藤・ 和田,2007). 最新の噴火活動は、250年前以降に生じた 水蒸気爆発である(和田・他,2003). 旭岳では現在も活 発な噴気活動が続いている.

御鉢平カルデラは大雪火山群の中央に位置しており. その直径は約2kmである (Fig. 2). 御鉢平カルデラの活 動では初期に山頂部で複数回の火砕噴火が生じた後(目 次、1987)、プリニー式噴火による降下軽石が北東から東 方向に堆積し,最終的に火砕流が生じた(勝井・他,1979). 火砕流は主に北東および南西方向に流下し, 現在の石狩 川と忠別川の源流域に厚く堆積した(勝井・他, 1979). 現在、御鉢平カルデラから北東の層雲峡や南西の天人峡 では溶結した火砕流堆積物が最大で200mにおよぶ柱状 節理を形成している(勝井・他, 1979). 勝井・他 (1979) は、山麓に堆積する降下軽石および火砕流堆積物中に存 在する炭化木片の¹⁴C年代値から、御鉢平カルデラの形 成時期を約3万年前と推定している。中村・平川(2000) や山元・他 (2010) も御鉢平カルデラ起源の噴出物の直 下の土壌から AMS 法による¹⁴C の補正年代値として、そ れぞれ 30,070±340 yBP, 32,640±820 yBP の年代値を報 告している. また、山元・他 (2010) は、32,640±820 vBP という年代値に対して暦年校正を行うと、38.028±836 cal yBP の年代値になることを示している.

御鉢平カルデラ起源の火山灰はカルデラから北東方向 の白滝盆地(中村・他, 1999),東方向の道東地域(隅田, 1988,1996;和田・他, 2007;長谷川・他, 2009;山元・他, 2010)で発見されており,道東地域では,約3万年前を示 す鍵層となっている.これらの火山灰は, co-ignimbrite ashであった可能性が高い(和田・他, 2007).

3. カルデラ形成期の噴火推移

山麓における御鉢平カルデラ起源の噴出物として、プ

Fig. 2. Geological map of Taisetsu volcanic group. The map modified after Metsugi (1987).

リニー式噴火による降下軽石と火砕流堆積物が確認でき る(勝井・他, 1979, 1988). カルデラの北東 10km の層 雲峡天城岩付近には、層厚約2mの降下軽石堆積物とそ れを直接覆う火砕流堆積物が確認でき、降下軽石の堆積 後に火砕流が流出した証拠とされた(勝井・他, 1988). 最近の研究で、御鉢平カルデラ起源の火砕流は、堆積物 中に含まれる軽石中のホルンブレンド斑晶と輝石斑晶 (斜方輝石斑晶とオージャイト斑晶)の量比で2種類に 分類できることが明らかとなり、火砕流を流出した噴火 イベントが2回あったことが指摘されている(佐藤・和 田, 2005; 若佐・他, 2005, 2006). 今回, 2種類の火砕流 堆積物中に含まれる軽石について,新たにホルンブレン ド斑晶と輝石斑晶の量比を求めた (Fig. 3). その結果, 両タイプの軽石はホルンブレンドと輝石の斑晶量によっ て区別できることが確認できた.本稿では、2種類の火 砕流堆積物について,軽石中にホルンブレンド斑晶を多 く含むものを Hb-type 火砕流,輝石斑晶を多く含むもの を Px-type 火砕流とする.

佐藤・和田 (2010) は、カルデラの東北東 11 km の層雲 峡大函付近で、勝井・他 (1988) と同様の層序を示す露頭 を確認し、降下軽石堆積物を直接覆うのは、Px-type 火砕

Fig. 3. Modal compositions of pyroxene (vol. %) and hornblende (vol.%) phenocrysts for pumice and scoria.

流堆積物であることを示した.また,佐藤・和田 (2011) はカルデラの南西 12 km の天人峡付近で,溶結した Hbtype 火砕流堆積物のブロックを含む 2 次的な流れの堆積 物を, Px-type 火砕流堆積物が覆う露頭を確認した.こ の露頭を含め,カルデラから南西方向の露頭では,北東 および東北東方向で確認された降下軽石堆積物は確認で きない.

山頂部においても山麓の層序と一致している. カルデ ラから東南東 2km の五色岳付近では,降下軽石堆積物 を Px-type 火砕流堆積物が直接覆っている. また,カル デラの南の沢では,Hb-type 火砕流堆積物を火砕サージ 堆積物が覆っている.この火砕サージ堆積物はカルデラ の南西から東にかけて広く堆積しており,カルデラ壁の 北西から北側では,火砕サージ堆積物を Px-type 火砕流 堆積物が覆っている(佐藤, 2005).したがって,Hb-type 火砕流の方が Px-type 火砕流よりも先に流出している.

以上のことから、Hb-type 火砕流の流出後、山頂付近 では火砕サージを堆積させるような噴火が生じ、その後、 プリニー式噴火による降下軽石がカルデラの北東~東南 東方向に堆積し、その直後に Px-type 火砕流が流下した ことになる。Hb-type 火砕流に先立つ降下軽石は現在の ところ確認できていない。

安田・他 (2012) は、山麓に堆積する2種類の火砕流堆 積物の残留磁化を測定し、残留磁化方向の違いからこれ らの火砕流の流出時期に数 100 年~数 1000 年の差があ ることを示した.上述したように、中村・平川 (2000) と 山元・他 (2010) が報告した AMS 法による¹⁴C の補正年 代値には、誤差を考慮すると1410~3730年の差がある. 中村・平川 (2000) が示したのは, 層雲峡大函の降下軽石 堆積物直下の土壌の年代値であり、そこでは Px-type 火 砕流堆積物が降下軽石堆積物を直接覆うことから、年代 値は Px-type 火砕流が流出した年代とほぼ同等と見なす ことができる. また, 山元・他 (2010) が示したのは, Hbtype 火砕流に伴う火山灰(和田・他, 2007)の直下の土壌 の年代値であり、Hb-type 火砕流が流出した年代とほぼ 同等と見なすことができる. したがって, Hb-type 火砕 流と Px-type 火砕流とでは、流出した時期に 1410~3730 年程度の差があった可能性がある.これは安田・他 (2012) が示した流出時期の差と調和的である.

4. 岩石記載

プリニー式噴火による降下軽石堆積物は主に軽石で構 成されるが、スコリア、縞状軽石も含まれる.また、2種 類の火砕流堆積物には本質物質として、軽石、スコリア、 縞状軽石が同時に含まれる.以下に軽石とスコリアにつ いて、顕微鏡下における特徴を記述する.また、降下軽 石堆積物中の軽石を降下軽石とし、Hb-type 火砕流堆積 物に含まれる軽石、スコリアをそれぞれ Hb-type 軽石、 Hb-type スコリア, Px-type 火砕流堆積物に含まれる軽石、 スコリアをそれぞれ Px-type 軽石、Px-type スコリアとす る. Table 1 に噴出物の代表的なモード組成 (PI: 斜長石、 Opx: 斜方輝石、Aug: オージャイト、Hb:ホルンブレン ド,Ox:鉄チタン酸化物,Qtz:石英)を示す.

4-1 軽石(SiO₂=64.9-68.4 wt.%, 斑晶量=6.9-30.5 vol. %)

斑晶は斜長石・斜方輝石・オージャイト・ホルンブレ ンド・鉄チタン酸化物からなる. Hb-type 軽石には石英 が含まれることがある. 斜長石 (4.3-26.7 vol.%) は最大 径 4.0 mm で自形~他形を示す.内部が清澄な斜長石, 内部に無色~淡褐色のガラス包有物 (5-100 µm) を含む 斜長石が多い. これらの多くは、中央部での累帯構造は 顕著ではないが、リムで累帯構造を示す場合がある. ま た,内部に褐色~黒色のガラス包有物 (2-70 µm) を含む 斜長石も存在する. これらのうちコアからリムにかけて 連続的に累帯構造を示すものも存在するが、多くは中央 部での累帯構造は顕著ではなく、リムから数10~100 μm 程度にかけて累帯構造を示す. 斜方輝石 (0.4-5.6 vol. %) は最大径 1.8 mm で自形~半自形であり, 累帯構造は 顕著ではない.オージャイト (0.1-3.2 vol.%) は最大径 1. 7mm で自形~半自形である. 斜方輝石と同様, 累帯構 造は顕著ではない. ホルンブレンド (< 0.1-9.5 vol.%) は最大径 2.4 mm で自形~半自形を示す.反応縁は発達 しておらず、リムで累帯構造を示すもの、内部に斜長石 を含むものがある.石英は丸みを帯びた形態を示す.斜 長石, 斜方輝石, 鉄チタン酸化物は集斑晶を形成するこ とがある. また、斜長石とホルンブレンドが接して存在 する場合がある.

斑晶鉱物のうちホルンブレンドは Hb-type 軽石と Px-type 軽石で斑晶量に明瞭な差があり (Hb-type 軽石:2.4-9.5vol.%, Px-type 軽石:0.1-1.4vol.%),上述したようにホルンブレンドと輝石の斑晶量によって,Hb-type 軽石と
Px-type 軽石は明瞭に分類できる (Fig. 3).

石基はほとんどがガラスで構成され、わずかに針状の 斜長石が存在する.発泡度は6.1-41.5 vol.% である.

4-2 スコリア (SiO₂=56.6-59.0 wt.%, 斑晶量=2.5-17. 5 vol.%)

斑晶は斜長石・斜方輝石・オージャイト・鉄チタン酸 化物からなり,ホルンブレンドを伴うことがある.また, Hb-type スコリアには石英が含まれることがある.斜長 石 (1.7-14.8 vol.%)は最大径 5.0 mm で自形~他形を示 す.内部に褐色~黒色のガラス包有物 (2-40 μm)を含む ことが多く,これらはコアやリムに濃集し,蜂の巣状や 汚濁状の形態を示す場合がある.コアからリムにかけて 連続的に累帯構造を示すものも存在するが,内部の累帯 構造は顕著ではなく,リムから数10~100 μm 程度にか けて累帯構造を示すものが多い.一方,ガラス包有物を あまり含まず,斑晶内部の屈折率が高くリムでのみ顕著 な累帯構造を示すものも存在する.軽石と同様に清澄な

Stage Sample No	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Px-type Fall	Px-type Fall
Occur	pumice	numice	scoria	scoria	pumice	pumice
Whole-rock compo	sition. maior ele	ement (wt.%)	sectia	beoma	puintee	puintee
SiO ₂	68.86	67.16	59.16	57.47	66.18	66.25
TiO	0.56	0.58	1.09	1.13	0.64	0.71
Al ₂ O ₃	14.90	16.70	17.42	18.06	15.38	16.23
FeO*	3.98	4.28	7.96	8.38	4.95	5.04
MnO	0.10	0.11	0.16	0.17	0.12	0.18
MgO	1.80	2.02	3.03	3.02	2.38	2.57
CaO	3.97	4.65	6.80	7.00	4.62	5.00
Na ₂ O	3.26	3.40	3.45	3.45	3.22	2.97
K ₂ O	3.18	2.62	1.58	1.15	2.76	2.54
P_2O_5	0.12	0.12	0.21	0.20	0.13	0.13
Total	100.73	101.64	100.86	100.03	100.38	101.62
Modal composition	i, phenocryst (va	ol.%)				
Pl	14.8	5.9	2.4	4.4	8.0	12.3
Opx	0.6	1.9	0.1	0.6	1.9	2.0
Срх	0.1	0.5	0.2	0.9	0.7	3.2
Hb	9.5	3.4	0.0	0.9	0.7	0.0
Ox	1.7	0.6	0.2	0.3	0.6	1.1
Qtz	-	-	0.5	-	-	-
Total	26.7	12.3	3.4	7.1	11.9	18.6
Stage	Px-type Pyf	Px-type Pyf	Px-type Pyf	Px-type Pyf		
Stage Sample No.	Px-type Pyf 0352503B1	Px-type Pyf 0352301D	Px-type Pyf 0352503A	Px-type Pyf 0351103A		
Stage Sample No. Occur.	Px-type Pyf 0352503B1 pumice	Px-type Pyf 0352301D pumice	Px-type Pyf 0352503A scoria	Px-type Pyf 0351103A scoria		
Stage Sample No. Occur. Whole-rock compo	Px-type Pyf 0352503B1 pumice sition, major ele	Px-type Pyf 0352301D pumice ement (wt.%)	Px-type Pyf 0352503A scoria	Px-type Pyf 0351103A scoria		
Stage Sample No. Occur. Whole-rock compo SiO ₂	Px-type Pyf 0352503B1 pumice sition, major ela 66.86	Px-type Pyf 0352301D pumice ement (wt.%) 66.87	Px-type Pyf 0352503A scoria 58.65	Px-type Pyf 0351103A scoria 57.59		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂	Px-type Pyf 0352503B1 pumice sition, major ele 66.86 0.60	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59	Px-type Pyf 0352503A scoria 58.65 0.96	Px-type Pyf 0351103A scoria 57.59 0.94		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃	Px-type Pyf 0352503B1 pumice sition, major ele 66.86 0.60 15.78	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67	Px-type Pyf 0352503A scoria 58.65 0.96 18.16	Px-type Pyf 0351103A scoria 57.59 0.94 17.65		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO*	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 2.25	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 2.07	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 2.26		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.70	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1 28		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O D	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.12	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ T-t-1	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13 101.28	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12 100.49	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17 100.42	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17 100.71		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total Modal composition	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13 101.28 a, phenocryst (vo	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12 100.49 pl.%)	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17 100.42	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17 100.71		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total Modal composition Pl Ocv	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13 101.28 a, phenocryst (vo 20.6	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12 100.49 ol.%) 17.1	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17 100.42 12.6 0.8	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17 100.71 9.3 0.2		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total Modal composition Pl Opx Cav	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13 101.28 a, phenocryst (vo 20.6 5.6	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12 100.49 pl.%) 17.1 2.1	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17 100.42 12.6 0.8 0.8	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17 100.71 9.3 0.3		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total Modal composition Pl Opx Cpx Hb	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13 101.28 a, phenocryst (wo 20.6 5.6 1.1 0.2	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12 100.49 bl.%) 17.1 2.1 1.4	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17 100.42 12.6 0.8 0.8	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17 100.71 9.3 0.3 1.6 0.6		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total Modal composition Pl Opx Cpx Hb	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13 101.28 a, phenocryst (vo 20.6 5.6 1.1 0.2	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12 100.49 bl.%) 17.1 2.1 1.4 0.5 1.6	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17 100.42 12.6 0.8 0.8	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17 100.71 9.3 0.3 1.6 0.6		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total Modal composition Pl Opx Cpx Hb Ox Otz	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13 101.28 a, phenocryst (vo 20.6 5.6 1.1 0.2 1.2	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12 100.49 bl.%) 17.1 2.1 1.4 0.5 1.6	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17 100.42 12.6 0.8 0.8 - 0.4	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17 100.71 9.3 0.3 1.6 0.6		
Stage Sample No. Occur. Whole-rock compo SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total Modal composition Pl Opx Cpx Hb Ox Qtz Total	Px-type Pyf 0352503B1 pumice 66.86 0.60 15.78 4.51 0.10 2.18 4.94 3.35 2.83 0.13 101.28 a, phenocryst (voc 20.6 5.6 1.1 0.2 1.2 - 28.7	Px-type Pyf 0352301D pumice ement (wt.%) 66.87 0.59 15.67 4.47 0.10 2.12 4.69 3.07 2.79 0.12 100.49 01.%) 17.1 2.1 1.4 0.5 1.6 	Px-type Pyf 0352503A scoria 58.65 0.96 18.16 6.84 0.14 3.01 7.82 3.20 1.47 0.17 100.42 12.6 0.8 0.8 - 0.4 -	Px-type Pyf 0351103A scoria 57.59 0.94 17.65 7.82 0.16 4.24 7.70 3.06 1.38 0.17 100.71 9.3 0.3 1.6 0.6 0.6		

Table 1. Representative whole-rock major element compositions and modal compositions.

Total Fe as FeO*.

Pl: Plagioclase, Opx: Orthopyroxene, Cpx: Clinopyroxene, Hb: Hornblende, Ox: Fe-Ti oxide, Qtz: Quartz

斜長石,内部に無色~淡褐色のガラス包有物(5-120µm) を含む斜長石も存在する.これらは、中央部での累帯構 造は顕著でないものが多く、リムで累帯構造を示す場合 がある.斜方輝石(<0.1-1.9 vol.%)は最大径 1.6 mm で 自形~半自形を示す.リムで累帯構造を示すものが存在 する.オージャイト(<0.1-1.6 vol.%)は最大径 1.5 mm で自形~半自形を示す.斜方輝石と同様にリムで累帯構 造を示すものが存在する.ホルンブレンド (<0.1-2.4 vol.%) は最大径 2.0 mm で自形~半自形を示す.反応縁 は認められない.また,斜長石,斜方輝石,オージャイ ト,鉄チタン酸化物は集斑晶を形成することがある.

石基にはガラスの他に、針状の斜長石、斜方輝石・オージャイト・鉄チタン酸化物が含まれる.発泡度は3.8-37.3 vol.% である.

Fig. 4. Harker diagrams for major elements. Major element analyses are normalized to 100 wt.%. Solid and dashed lines, drawn by the method of least squares, show mixing lines for Px-type and Hb-type, respectively.

5. 全岩化学組成

岩石の化学組成分析(主成分元素)は北海道大学理学 部地球惑星科学教室の蛍光 X線分析装置(PANalytical 社製 Magix PRO)で、1:2に希釈したガラスビードを測 定して行った.今回分析を行った試料は軽石とスコリア である.Table 1に岩石の代表的な化学組成分析値を示 す.他の岩石の化学組成および試料の採取地点は、佐 藤・他(2005)に示している.

御鉢平カルデラ噴出物のうち軽石の SiO₂量は 64.9-68. 4 wt.% であり、デイサイトの化学組成を示す (Fig. 4). 一方、スコリアの SiO₂量は 56.6-59.0 wt.% であり、安山 岩の化学組成を示す (Fig. 4). 軽石、スコリアともに Hbtype と Px-type の SiO₂ 量は、ほぼオーバーラップしてい る. しかし、スコリアについては、MgO、CaO で Hb-type スコリアの方が Px-type スコリアに比べて低く、TiO₂、 FeO*、Na₂O、P₂O₅で Hb-type スコリアの方が Px-type ス コリアに比べて高い. このように化学組成において、 Hb-type スコリアと Px-type スコリアは明瞭に区別でき る (Fig. 4). 軽石については、TiO₂、FeO*、MgO で Hbtype 軽石の方が Px-type 軽石に比べてわずかに低く、Al₂ O₃で Hb-type 軽石の方が Px-type 軽石よりもわずかに高 い (Fig. 4).

2 種類の火砕流堆積物に含まれる軽石とスコリアのペア(Hb-type 軽石と Hb-type スコリア, Px-type 軽石と Px-type スコリア)は全岩化学組成で異なる直線トレンドを示す(Fig. 4).

6. 鉱物化学組成

鉱物の化学組成分析は北海道教育大学旭川校の EPMA (JXA-8600SX)を用いて行った.測定条件は,加 速電圧 15kV,試料電流は斜長石,ホルンプレンドが 1.5 ×10⁻⁸A,斜方輝石,オージャイト,鉄チタン酸化物が 2.0×10⁻⁸A,ビーム径は3μmである.補正はZAF法に 従った.

6-1 斜長石

コアの An 組成 (=100×Ca/(Ca+Na)) は An=36-90 の広い組成範囲を示す (Fig. 5a). 頻度分布データをもと に、An>70 のものを type A、An<56 のものを type B、そ れらの中間的な組成のものを type C とすると、降下軽 石、Hb-type 軽石、Px-type 軽石には type B が最も多く含 まれる. 一方、Hb-type スコリア、Px-type スコリアには type A と type B がほぼ同量含まれる. Type C は Px-type の噴出物に比べて、Hb-type の噴出物に多く含まれる.

Type A は, 斑晶コアの MgO 量によって 2 種類に分類 することができる (Fig. 5b). ここで, 斑晶コアの MgO が 0.05 wt.% より高いものを type A1, MgO が 0.05 wt.% よりも低いものを type A2 とする. 軽石に含まれる type A はほとんどが type A2 であるのに対し, スコリアには type A1 と type A2 が共存している (Fig. 5b).

岩石記載で記した内部が清澄な斜長石と透明〜褐色の ガラス包有物を含む斜長石のほとんどは type B である. また,褐色〜黒色のガラス包有物を含み,リムから数 10~100 μm 程度にかけて累帯構造を示すものは type A2 であり,内部の屈折率が高く、リムで顕著な累帯構造を 示すものは type A1 である場合が多い.また,比較的サ イズが小さく (100-300 μm),自形であり,リムで累帯構 造を示すものは type C である場合が多い.

Fig. 6 に各タイプの斜長石における代表的な累帯構造 プロファイルを示す. Type A1 は、コアで高 An 組成を 示し,内部でも高 An 組成を維持するが,リムで An が急 減する (Fig. 6b, 6d). Type A1 の MgO 量は常に 0.05 wt.% 以上を保つ (Fig. 6f, 6h). Type A2 は, コアで高 An 組成 を示すが、Hb-type についてはリムから 50-70 µm, Pxtype については, 軽石がリムから 170-200 µm, スコリア がリムから 70-80 µm で An が急減し, そこからリムまで は低 An 組成でほぼ一定の値を示す (Fig. 6a, 6b, 6c, 6d). また, MgO 量は常に 0.05 wt.% 以下である (Fig. 6e, 6f, 6g, 6h). Type B はコアで低 An 組成を示し、リムまでほぼ一 定であるが (Fig. 6a, 6b, 6c, 6d), リムで An が上昇する場 合もある (Fig. 6b). MgO 量は、一部リムで高い値を示す が (Fig. 6f), 多くは 0.05 wt.% 以下である (Fig. 6e, 6f, 6g, 6h). Type C は, 内部で An=60-70 のほぼ一定の組成を 示し、リムで An が減少する (Fig. 6c).

軽石中に存在するホルンブレンドに接する斜長石およ びホルンブレンドに含まれる斜長石の化学組成を分析し たところ, Px-type 軽石では, An=52 (N=1), Hb-type 軽 石では, An=46-60 (N=15) を示した (Fig. 5a). Hb-type 軽石については, type B の一部, および type C と一致す る An 組成を示した.

代表的な斜長石斑晶コアの化学組成を Table 2 に示す. 6-2 斜方輝石

斑晶コアの Mg#(=100×Mg/(Mg+Fe)) は、多くが Mg#=63-70 の狭い組成範囲を示し、Mg#>70 を示すも のは Hb-type スコリアにわずかに含まれるのみである (Fig. 7). Mg# のピークは、Hb-type 軽石、Hb-type スコリ アが Mg#=65-67 であるのに対して、降下軽石、Px-type 軽石、Px-type スコリアが Mg#=67-69 であり、Hb-type 軽石、Hb-type スコリアよりもわずかに高い値を示す (Fig. 7).

Wo (=100×Ca/(Mg+Fe+Ca)) は、多くが Wo=1.5-2.3の範囲内であるが、Hb-type スコリアには、Wo=2.9-3.1の高い値を示すものが存在する (Fig. 8). また、Px-

Fig. 5. (a) Histograms of core compositions of plagioclase phenocrysts. The horizontal bars represent the ranges of compositions of plagioclase contacted with and included in hornblende phenocrysts. (b) MgO versus An content variation diagrams of cores of plagioclase phenocrysts.

Fig. 6. Zoning profiles of plagioclase phenocrysts.

type スコリアには一つのみ Wo=3.4 を示すものが確認 できる (Fig. 8). Wo が高い値を示すものは, Hb-type ス コリアについては, Mg# とも相関があり, それらは Mg# >70 を示す. しかし, Px-type スコリアについては, Mg# との相関はみられない. 代表的な斜方輝石斑晶コアの化 学組成を Table 3 に示す.

6-3 オージャイト

斑晶コアの Mg# は 72-78 の狭い組成範囲を示す(Fig.

 Woは40.3-46.4の範囲で,Hb-typeスコリア中には Wo=40-42と低い値を示すものが存在する (Fig. 8).代 表的なオージャイト斑晶のコアの化学組成をTable 3 に 示す.

6-4 ホルンブレンド

斑晶コアの Mg# は, Hb-type 軽石, Hb-type スコリアで
Mg#=65-72 を示し, Px-type 軽石で Mg#=70-75 を示す
(Fig. 7). 代表的なホルンブレンドの化学組成を Table 4

Table 2. Representative chemical compositions of the core of plagioclase phenocrysts.

Stage Sample No	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Px-type Fall	Px-type Fall
Occur.	numice	pumice	numice	scoria	scoria	scoria	scoria	numice	numice
Grain No.	P1-75	P1-36	P1-42	P1-22	Pl-11	PI-13	P1-4	P1-20	P1-75
Туре	type A2	type B	type C	type A1	type A2	type B	type C	type A2	type B
wt.%									
SiO_2	47.25	58.03	52.88	47.97	51.50	58.09	52.20	47.63	58.97
Al_2O_3	33.97	26.53	30.03	32.74	30.54	26.40	29.40	33.06	26.17
FeO	0.35	0.29	0.34	0.58	0.48	0.29	0.67	0.30	0.33
MgO	0.01	0.01	0.02	0.07	0.02	0.02	0.05	0.01	0.02
CaO	17.76	9.18	13.39	16.89	14.32	9.22	12.80	16.85	8.97
Na ₂ O	1.52	6.06	4.01	1.83	3.35	6.06	4.02	1.91	5.37
K_2O	0.05	0.43	0.21	0.04	0.15	0.44	0.19	0.08	0.47
Total	100.91	100.53	100.88	100.12	100.36	100.52	99.33	99.84	100.30
Cations (O=	8)								
Si	2.155	2.591	2.383	2.202	2.340	2.594	2.390	2.191	2.626
Al	1.826	1.396	1.595	1.771	1.635	1.389	1.586	1.792	1.374
Fe	0.013	0.011	0.013	0.022	0.018	0.011	0.026	0.012	0.012
Mg	0.001	0.001	0.002	0.005	0.001	0.001	0.003	0.001	0.001
Ca	0.868	0.439	0.646	0.831	0.697	0.441	0.628	0.831	0.428
Na	0.134	0.524	0.350	0.163	0.295	0.524	0.357	0.171	0.463
Κ	0.003	0.025	0.012	0.002	0.009	0.025	0.011	0.004	0.027
Total	5.000	4.987	5.001	4.996	4.995	4.985	5.001	5.002	4.931
An	86.63	45.59	64.83	83.60	70.26	45.70	63.77	82.93	48.04
Stage	Px-type Fall	Px-type Pyf	Px-type Pyf	Px-type Pyf	Px-type Pyf	Px-type Pyf	Px-type Pyf	Px-type Pyf	
Stage Sample No.	Px-type Fall 0041701B	Px-type Pyf 0352503B	Px-type Pyf 0352503B	Px-type Pyf 0352503B	Px-type Pyf 0352503A	Px-type Pyf 0352503A	Px-type Pyf 0352503A	Px-type Pyf 0352503A	
Stage Sample No. Occur.	Px-type Fall 0041701B pumice	Px-type Pyf 0352503B pumice	Px-type Pyf 0352503B pumice	Px-type Pyf 0352503B pumice	Px-type Pyf 0352503A scoria	Px-type Pyf 0352503A scoria	Px-type Pyf 0352503A scoria	Px-type Pyf 0352503A scoria	
Stage Sample No. Occur. Grain No.	Px-type Fall 0041701B pumice Pl-21	Px-type Pyf 0352503B pumice Pl-211	Px-type Pyf 0352503B pumice Pl-132	Px-type Pyf 0352503B pumice Pl-171	Px-type Pyf 0352503A scoria Pl-75	Px-type Pyf 0352503A scoria Pl-19	Px-type Pyf 0352503A scoria Pl-41	Px-type Pyf 0352503A scoria Pl-79	
Stage Sample No. Occur. Grain No. Type	Px-type Fall 0041701B pumice Pl-21 type C	Px-type Pyf 0352503B pumice Pl-211 type A2	Px-type Pyf 0352503B pumice Pl-132 type B	Px-type Pyf 0352503B pumice Pl-171 type C	Px-type Pyf 0352503A scoria Pl-75 type A1	Px-type Pyf 0352503A scoria Pl-19 type A2	Px-type Pyf 0352503A scoria Pl-41 type B	Px-type Pyf 0352503A scoria Pl-79 type C	
Stage Sample No. Occur. Grain No. Type wt.%	Px-type Fall 0041701B pumice Pl-21 type C	Px-type Pyf 0352503B pumice PI-211 type A2	Px-type Pyf 0352503B pumice Pl-132 type B	Px-type Pyf 0352503B pumice Pl-171 type C	Px-type Pyf 0352503A scoria Pl-75 type A1	Px-type Pyf 0352503A scoria Pl-19 type A2	Px-type Pyf 0352503A scoria Pl-41 type B	Px-type Pyf 0352503A scoria Pl-79 type C	
Stage Sample No. Occur. Grain No. Type wt.% SiO ₂	Px-type Fall 0041701B pumice Pl-21 type C 52.93	Px-type Pyf 0352503B pumice PI-211 type A2 47.64	Px-type Pyf 0352503B pumice Pl-132 type B 58.33	Px-type Pyf 0352503B pumice Pl-171 type C 54.02	Px-type Pyf 0352503A scoria PI-75 type A1 48.61	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29	Px-type Pyf 0352503A scoria Pl-41 type B 57.57	Px-type Pyf 0352503A scoria PI-79 type C 53.34	
Stage Sample No. Occur. Grain No. Type wt.% SiO ₂ Al ₂ O ₃	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25	Px-type Pyf 0352503B pumice Pl-211 type A2 47.64 32.98	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58	Px-type Pyf 0352503A scoria PI-79 type C 53.34 29.23	
Stage Sample No. Occur. Grain No. Type wt.% SiO ₂ Al ₂ O ₃ FeO	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35	Px-type Pyf 0352503B pumice Pl-211 type A2 47.64 32.98 0.39	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34	Px-type Pyf 0352503A scoria Pl-75 type A1 48.61 32.79 0.51	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20 0.45	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32	Px-type Pyf 0352503A scoria Pl-79 type C 53.34 29.23 0.47	
Stage Sample No. Occur. Grain No. Type wt.% SiO ₂ Al ₂ O ₃ FeO MgO	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79 0.51 0.08	Px-type Pyf 0352503A scoria PI-19 type A2 48.29 33.20 0.45 0.02	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03	Px-type Pyf 0352503A scoria PI-79 type C 53.34 29.23 0.47 0.07	
Stage Sample No. Occur. Grain No. Type wt.% SiO ₂ Al ₂ O ₃ FeO MgO CaO	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02 17.18	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79 0.51 0.08 16.70	Px-type Pyf 0352503A scoria PI-19 type A2 48.29 33.20 0.45 0.02 17.02	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68	Px-type Pyf 0352503A scoria PI-79 type C 53.34 29.23 0.47 0.07 12.89	
Stage Sample No. Occur. Grain No. Type wt.% SiO ₂ Al ₂ O ₃ FeO MgO CaO Na ₂ O	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61	Px-type Pyf 0352503B pumice Pl-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77	Px-type Pyf 0352503A scoria PI-79 type C 53.34 29.23 0.47 0.07 12.89 4.18	
Stage Sample No. Occur. Grain No. Type wt.% SiO ₂ Al ₂ O ₃ FeO MgO CaO Na ₂ O K ₂ O	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18	Px-type Pyf 0352503B pumice Pl-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44	Px-type Pyf 0352503A scoria Pl-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17	
Stage Sample No. Occur. Grain No. Type wt.% SiO2 Al2O3 FeO MgO CaO Na2O K2O Total	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71	Px-type Pyf 0352503A scoria PI-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39	Px-type Pyf 0352503A scoria PI-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35	
Stage Sample No. Occur. Grain No. Type wt.% SiO2 Al2O3 FeO MgO CaO Na2O K2O Total Cations (O=	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8)	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71	Px-type Pyf 0352503A scoria PI-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80	Px-type Pyf 0352503A scoria PI-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39	Px-type Pyf 0352503A scoria PI-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35	
Stage Sample No. Occur. Grain No. Type wt.% SiO2 Al2O3 FeO MgO CaO Na2O K2O Total Cations (O= Si	Px-type Fall 0041701B pumice PI-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8) 2.381	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01 2.190	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67 2.595	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69 2.428	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71 2.215	Px-type Pyf 0352503A scoria PI-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80 2.199	Px-type Pyf 0352503A scoria PI-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39 2.577	Px-type Pyf 0352503A scoria PI-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35 2.413	
Stage Sample No. Occur. Grain No. Type wt.% SiO2 Al2O3 FeO MgO CaO Na2O K2O Total Cations (O= Si Al	Px-type Fall 0041701B pumice PI-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8) 2.381 1.604	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01 2.190 1.786	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67 2.595 1.400	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69 2.428 1.559	Px-type Pyf 0352503A scoria PI-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71 2.215 1.761	Px-type Pyf 0352503A scoria PI-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80 2.199 1.782	Px-type Pyf 0352503A scoria PI-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39 2.577 1.403	Px-type Pyf 0352503A scoria PI-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35 2.413 1.559	
StageSample No.Occur.Grain No.Type $wt.\%$ SiO2Al2O3FeOMgOCaONa2OK2OTotalCations (O=SiAlFe	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8) 2.381 1.604 0.013	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01 2.190 1.786 0.015	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67 2.595 1.400 0.011	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69 2.428 1.559 0.013	Px-type Pyf 0352503A scoria Pl-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71 2.215 1.761 0.019	Px-type Pyf 0352503A scoria PI-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80 2.199 1.782 0.017	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39 2.577 1.403 0.012	Px-type Pyf 0352503A scoria Pl-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35 2.413 1.559 0.018	
StageSample No.Occur.Grain No.Type $wt.\%$ SiO2Al2O3FeOMgOCaONa2OK2OTotalCations (O=SiAlFeMg	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8) 2.381 1.604 0.013 0.001	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01 2.190 1.786 0.015 0.001	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67 2.595 1.400 0.011 0.001	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69 2.428 1.559 0.013 0.001	Px-type Pyf 0352503A scoria Pl-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71 2.215 1.761 0.019 0.005	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80 2.199 1.782 0.017 0.001	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39 2.577 1.403 0.012 0.002	Px-type Pyf 0352503A scoria Pl-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35 2.413 1.559 0.018 0.005	
StageSample No.Occur.Grain No.Type $wt.\%$ SiO2Al2O3FeOMgOCaONa2OK2OTotalCations (O=SiAlFeMgCa	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8) 2.381 1.604 0.013 0.001 0.657	Px-type Pyf 0352503B pumice PI-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01 2.190 1.786 0.015 0.001 0.846	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67 2.595 1.400 0.011 0.001 0.446	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.02 12.61 4.08 0.19 100.69 2.428 1.559 0.013 0.001 0.607	Px-type Pyf 0352503A scoria Pl-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71 2.215 1.761 0.019 0.005 0.816	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80 2.199 1.782 0.017 0.001 0.831	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39 2.577 1.403 0.012 0.002 0.464	Px-type Pyf 0352503A scoria Pl-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35 2.413 1.559 0.018 0.005 0.625	
StageSample No.Occur.Grain No.Type $wt.\%$ SiO2Al2O3FeOMgOCaONa2OK2OTotalCations (O=SiAlFeMgCaNa	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8) 2.381 1.604 0.013 0.001 0.657 0.315	Px-type Pyf 0352503B pumice Pl-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01 2.190 1.786 0.015 0.001 0.846 0.154	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67 2.595 1.400 0.011 0.001 0.446 0.481	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69 2.428 1.559 0.013 0.001 0.607 0.356	Px-type Pyf 0352503A scoria Pl-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71 2.215 1.761 0.019 0.005 0.816 0.174	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80 2.199 1.782 0.017 0.001 0.831 0.154	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39 2.577 1.403 0.012 0.002 0.464 0.501	Px-type Pyf 0352503A scoria Pl-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35 2.413 1.559 0.018 0.005 0.625 0.366	
$\begin{tabular}{ c c c c c } \hline Stage \\ Sample No. \\ Occur. \\ Grain No. \\ \hline Type \\ \hline wt.\% \\ SiO_2 \\ Al_2O_3 \\ FeO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ Total \\ Cations (O= \\ Si \\ Al \\ Fe \\ Mg \\ Ca \\ Na \\ K \end{tabular}$	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8) 2.381 1.604 0.013 0.001 0.657 0.315 0.010	Px-type Pyf 0352503B pumice Pl-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01 2.190 1.786 0.015 0.001 0.846 0.154 0.004	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67 2.595 1.400 0.011 0.001 0.446 0.481 0.022	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69 2.428 1.559 0.013 0.001 0.607 0.356 0.011	Px-type Pyf 0352503A scoria Pl-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71 2.215 1.761 0.019 0.005 0.816 0.174 0.003	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80 2.199 1.782 0.017 0.001 0.831 0.154 0.004	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39 2.577 1.403 0.012 0.002 0.464 0.501 0.025	Px-type Pyf 0352503A scoria Pl-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35 2.413 1.559 0.018 0.005 0.625 0.366 0.010	
StageSample No.Occur.Grain No.Type $wt.\%$ SiO2Al2O3FeOMgOCaONa2OK2OTotalCations (O=SiAlFeMgCaNaKTotal	Px-type Fall 0041701B pumice Pl-21 type C 52.93 30.25 0.35 0.02 13.62 3.61 0.18 100.96 8) 2.381 1.604 0.013 0.001 0.657 0.315 0.010 4.980	Px-type Pyf 0352503B pumice Pl-211 type A2 47.64 32.98 0.39 0.02 17.18 1.73 0.07 100.01 2.190 1.786 0.015 0.001 0.846 0.154 0.004 4.996	Px-type Pyf 0352503B pumice Pl-132 type B 58.33 26.70 0.30 0.02 9.37 5.57 0.38 100.67 2.595 1.400 0.011 0.001 0.446 0.481 0.022 4.956	Px-type Pyf 0352503B pumice Pl-171 type C 54.02 29.43 0.34 0.02 12.61 4.08 0.19 100.69 2.428 1.559 0.013 0.001 0.607 0.356 0.011 4.975	Px-type Pyf 0352503A scoria Pl-75 type A1 48.61 32.79 0.51 0.08 16.70 1.97 0.05 100.71 2.215 1.761 0.019 0.005 0.816 0.174 0.003 4.993	Px-type Pyf 0352503A scoria Pl-19 type A2 48.29 33.20 0.45 0.02 17.02 1.75 0.07 100.80 2.199 1.782 0.017 0.001 0.831 0.154 0.004 4.988	Px-type Pyf 0352503A scoria Pl-41 type B 57.57 26.58 0.32 0.03 9.68 5.77 0.44 100.39 2.577 1.403 0.012 0.002 0.464 0.501 0.025 4.984	Px-type Pyf 0352503A scoria Pl-79 type C 53.34 29.23 0.47 0.07 12.89 4.18 0.17 100.35 2.413 1.559 0.018 0.005 0.625 0.366 0.010 4.995	

に示す.

6-5 鉄チタン酸化物

鉄チタン酸化物として、マグネタイトとイルメナイト を含む. マグネタイトの Mg/Mn は、Hb-type で Mg/Mn =2-6、Px-type で Mg/Mn=5-10 にピークがあり、Mg/Mn >10 のものはスコリアにわずかに含まれるのみである (Fig. 9). イルメナイトは軽石に多く含まれ、スコリアに はほとんど含まれない. Mg/Mn は、Hb-type 軽石で、 Mg/Mn=3-6, Px-type 軽石で Mg/Mn=6-12 にピークが あり, Mg/Mn>15 のものはまれにしか存在しない (Fig. 9). 代表的なマグネタイトとイルメナイトの化学組成を Table 5 に示す.

7. 議 論

御鉢平カルデラの噴出物には、マグマ混合によって形 成された証拠が多く確認できる.以下にマグマ混合の証

Fig. 7. Histograms of core compositions of orthopyroxene, augite and hornblende phenocrysts.

拠と端成分マグマの種類,温度,物性(粘性係数,密度) を示し,噴火に至ったマグマ供給系の進化過程を明らか にする.

7-1 端成分マグマ

御鉢平カルデラの噴出物には本質物質として,軽石, スコリア,縞状軽石が同時に含まれることから,化学組 成の異なる複数のマグマが噴火前に混合したと考えられ る.

噴出物中の斜長石斑晶に注目すると, 化学組成の異な る斜長石斑晶 (type A, type B, type C) が共存している (Fig. 5a). マグマの液組成との平衡関係から, type-A 斜 長石斑晶は苦鉄質マグマ由来であり、type-B 斜長石斑晶 は珪長質マグマ由来であると考えられる.また、type-C 斜長石斑晶はtype-Aとtype-B 斜長石斑晶の中間組成を 示すこと、斑晶のサイズが比較的小さく自形である場合 が多いことから、苦鉄質マグマと珪長質マグマが混合し たマグマから晶出したと考えられる.これら複数のマグ マが混合することで化学組成の異なる斜長石斑晶が共存 したと考えられる.ここで、type-A 斜長石斑晶を含む苦 鉄質マグマをAマグマ、type-B 斜長石斑晶を含む珪長質 マグマをBマグマ、type-C 斜長石斑晶を含む混合マグマ をCマグマとする.

Fig. 8. Core compositions of orthopyroxene (triangles) and augite (squares) phenocrysts.

また, type-A 斜長石斑晶はコアの MgO 量によって 2 つのタイプに分類することができる (type A1 : MgO>0. 05 wt.%, type A2 : MgO<0.05 wt.%) (Fig. 5b). 斜長石斑晶 の MgO 量は晶出したマグマの MgO 量に依存すること から (佐藤, 1996), type-A1 と type-A2 斜長石斑晶は異 なる苦鉄質マグマ由来の可能性がある.一方, 斜長石中 の MgO 量の元素拡散は比較的速いことが知られている (Costa *et al.*, 2003). Costa *et al.* (2003) によると, サイズ が 200-900 μm でコアの組成が An=80, MgO=0.06 wt.% の斜長石斑晶が,850℃のマグマ中で拡散によって MgO =0.02 wt.% まで低下するのに要する時間は数 10 年から 200 年程度である.したがって,type-A1と type-A2 斜長 石斑晶が元々同一の苦鉄質マグマから晶出し,ともに 0. 05 wt.% よりも高い MgO 量を有していた場合でも,珪長 質マグマと混合するタイミングの違いで MgO 量に変化 が生じた可能性がある.

斜長石の累帯構造プロファイルに注目すると、type-A1 斜長石斑晶は、リムでAnが急減しているのに対して (Fig.

~								
Stage	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Px-type Fall	Px-type Fall
Sample No.	0351101B	0351101B	0352302A	0352302A	0352302A	0352302A	0461701B	0461701B
Occur.	pumice	pumice	scoria	scoria	scoria	scoria	pumice	pumice
Grain No	Ony 28	A110 9	Onx 26	Opx 28	Aug 24	Aug 39	Onv 3	Aug 23
	007 20	nug y	0px 20	high Wo	low Wo	Hug 55	Оря 5	Tug 25
wt.%								
SiO ₂	54.26	53.14	53.21	54.10	53.71	52.61	53.96	53.67
TiO ₂	0.11	0.14	0.16	0.17	0.30	0.33	0.19	0.21
Al ₂ O ₃	0.30	0.69	0.71	1.55	0.73	1.48	0.74	0.92
FeO	21.13	8.39	21.71	15.71	9.46	8.37	19.86	7.93
MnO	1.62	0.39	1 38	0.40	0.44	0.38	0.88	0.56
MgO	22.25	14.98	22.41	26.18	15.48	14 90	23.64	14 94
CoO	0.75	21.01	0.99	1.57	10.40	21.74	0.02	21.71
CaO N. O	0.73	21.91	0.00	1.37	19.62	21.74	0.92	21.71
Na ₂ O	0.00	0.28	0.02	0.02	0.30	0.27	0.01	0.26
Cr_2O_3	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.41	99.95	100.47	99.69	100.25	100.07	100.20	100.19
Cations (O=6)								
Si	2.007	1.978	1.976	1.963	1.988	1.956	1.985	1.986
Ti	0.003	0.004	0.002	0.002	0.004	0.005	0.005	0.006
A1	0.003	0.030	0.002	0.066	0.032	0.065	0.032	0.040
AI Ea	0.013	0.030	0.031	0.000	0.032	0.005	0.032	0.040
ге	0.634	0.261	0.674	0.477	0.293	0.260	0.011	0.243
Mn	0.051	0.012	0.043	0.012	0.014	0.012	0.027	0.018
Mg	1.227	0.831	1.240	1.416	0.854	0.825	1.296	0.824
Ca	0.030	0.874	0.035	0.061	0.787	0.866	0.036	0.861
Na	0.000	0.020	0.001	0.002	0.022	0.019	0.000	0.018
Cr	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Total	3.984	4.012	4.003	3.998	3.994	4.008	3.994	3.998
Wo	1.55	44 45	1 79	3.12	40.67	44 38	1.86	44 59
Mo#	65.24	76.09	64 79	74.81	74 47	76.04	67.97	77.07
1115/	00.21	10.05	01.17	71.01	,,	70.01	01.51	11:01
~								
Stage	Px-type Pyf	Px-type Pyf	Px-type Pyf	Px-type Pyf	Px-type Pyf			
Stage Sample No.	Px-type Pyf 0352503B	Px-type Pyf 0352503B	Px-type Pyf 0352503A	Px-type Pyf 0352503A	Px-type Pyf 0352503A			
Stage Sample No. Occur.	Px-type Pyf 0352503B pumice	Px-type Pyf 0352503B pumice	Px-type Pyf 0352503A scoria	Px-type Pyf 0352503A scoria	Px-type Pyf 0352503A scoria			
Stage Sample No. Occur. Grain No.	Px-type Pyf 0352503B pumice Ony 6	Px-type Pyf 0352503B pumice Aug 16	Px-type Pyf 0352503A scoria	Px-type Pyf 0352503A scoria Opx 20B	Px-type Pyf 0352503A scoria			
Stage Sample No. Occur. Grain No.	Px-type Pyf 0352503B pumice Opx 6	Px-type Pyf 0352503B pumice Aug 16	Px-type Pyf 0352503A scoria Opx 11	Px-type Pyf 0352503A scoria Opx 20B high Wo	Px-type Pyf 0352503A scoria Aug 5B			
Stage Sample No. Occur. Grain No. wt.%	Px-type Pyf 0352503B pumice Opx 6	Px-type Pyf 0352503B pumice Aug 16	Px-type Pyf 0352503A scoria Opx 11	Px-type Pyf 0352503A scoria Opx 20B high Wo	Px-type Pyf 0352503A scoria Aug 5B			
Stage Sample No. Occur. Grain No. wt.% SiO ₂	Px-type Pyf 0352503B pumice Opx 6 54.83	Px-type Pyf 0352503B pumice Aug 16 53.47	Px-type Pyf 0352503A scoria Opx 11 54.38	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85	Px-type Pyf 0352503A scoria Aug 5B 52.23			
Stage Sample No. Occur. Grain No. wt.% SiO ₂ TiO ₂	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48			
Stage Sample No. Occur. Grain No. wt.% SiO ₂ TiO ₂ Al ₂ O ₃	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71			
Stage Sample No. Occur. Grain No. W1.% SiO ₂ TiO ₂ Al ₂ O ₃ FeO	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28			
Stage Sample No. Occur. Grain No. <i>wt.%</i> SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36			
Stage Sample No. Occur. Grain No. <i>wt.%</i> SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO M¢O	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23 71	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14 79	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14 25			
Stage Sample No. Occur. Grain No. <i>wt.%</i> SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81			
Stage Sample No. Occur. Grain No. <u>wt.%</u> SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO No O	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42			
Stage Sample No. Occur. Grain No. <i>wt.%</i> SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.02	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.12			
Stage Sample No. Occur. Grain No. wt.% SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Tu-1	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13			
Stage Sample No. Occur. Grain No. wt.% SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Total	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66			
$\begin{array}{l} \mbox{Stage} \\ \mbox{Sample No.} \\ \mbox{Occur.} \\ \mbox{Grain No.} \\ \hline \mbox{Wt.\%} \\ \mbox{SiO}_2 \\ \mbox{SiO}_2 \\ \mbox{TiO}_2 \\ \mbox{Al}_2O_3 \\ \mbox{FeO} \\ \mbox{MgO} \\ \mbox{CaO} \\ \mbox{Ma}_2O \\ \mbox{Cr}_2O_3 \\ \mbox{Total} \\ \mbox{Cations (O=6)} \end{array}$	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66			
Stage Sample No. Occur. Grain No. wt.% SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Total Cations (O=6) Si	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951			
Stage Sample No. Occur. Grain No. wt.% SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Total Cations (O=6) Si Ti	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014			
Stage Sample No. Occur. Grain No. wt.% SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Total Cations (O=6) Si Ti Al	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075			
Stage Sample No. Occur.Grain No. $wt.\%$ SiO2 TiO2 Al2O3 FeO MnO CaO Na2O Cr2O3 Total Cations (O=6) Si Ti Al Fee	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259			
Stage Sample No. Occur. Grain No. wt.% SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Total Cations (O=6) Si Ti Al Fe	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595 0.026	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242 0.012	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624 0.021	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054 0.054	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259 0.011			
Stage Sample No. Occur. Grain No. wt.% SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Total Cations (O=6) Si Ti Al Fe Mn	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595 0.026	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242 0.013 0.81	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624 0.031	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054 0.611 0.024	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259 0.011			
Stage Sample No. Occur. Grain No. wt.% SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Total Cations (O=6) Si Ti Al Fe Mn Mg	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595 0.026 1.288	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242 0.013 0.814	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624 0.031 1.288	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054 0.611 0.024 1.293	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259 0.011 0.793			
$\begin{array}{l} \mbox{Stage} \\ \mbox{Sample No.} \\ \mbox{Occur.} \\ \mbox{Grain No.} \\ \hline \mbox{Wt.\%} \\ \mbox{SiO}_2 \\ \mbox{TiO}_2 \\ \mbox{Al}_2O_3 \\ \mbox{FeO} \\ \mbox{MnO} \\ \mbox{CaO} \\ Ca$	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595 0.026 1.288 0.036	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242 0.013 0.814 0.891	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624 0.031 1.288 0.035	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054 0.651 0.024 1.293 0.067	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259 0.011 0.793 0.873			
$\begin{array}{l} \hline Stage \\ Sample No. \\ Occur. \\ \hline Grain No. \\ \hline Wt.\% \\ SiO_2 \\ TiO_2 \\ Al_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ MgO \\ CaO \\ Cr_2O_3 \\ Total \\ Cations (O=6) \\ Si \\ Ti \\ Al \\ Fe \\ Mn \\ Mg \\ Ca \\ Na \\ \end{array}$	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595 0.026 1.288 0.036 0.000	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242 0.013 0.814 0.891 0.020	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624 0.031 1.288 0.035 0.002	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054 0.611 0.024 1.293 0.067 0.005	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259 0.011 0.793 0.873 0.030			
Stage Sample No. Occur. Grain No. <i>wt.%</i> SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr Si Ti Al Fe Mn Mg Ca Ma Cr	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595 0.026 1.288 0.036 0.000 0.000	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242 0.013 0.814 0.891 0.020 0.001	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624 0.031 1.288 0.035 0.002 0.000	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054 0.611 0.024 1.293 0.067 0.005 0.000	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259 0.011 0.793 0.873 0.030 0.004			
Stage Sample No. Occur.Grain No. $wt.\%$ SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Cr2O3 Total Cations (O=6)Si Ti Al Fe Mn Mg Ca Na Cr TotalGaitains Ca	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595 0.026 1.288 0.036 0.000 0.000 3.981	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242 0.013 0.814 0.891 0.020 0.001 4.006	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624 0.031 1.288 0.035 0.002 0.000 3.995	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054 0.611 0.024 1.293 0.067 0.005 0.005 0.000 4.015	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259 0.011 0.793 0.873 0.030 0.004 4.011			
Stage Sample No. Occur.Grain No. $wt.\%$ SiO2 TiO2 Al2O3 FeO MnOMgO CaO CaO Na2O Cr2O3 TotalCations (O=6) Si Ti Al Fe Mn Mg Ca Na Ca Na Cr Total Cr Total Wo	Px-type Pyf 0352503B pumice Opx 6 54.83 0.16 0.76 19.53 0.86 23.71 0.93 0.00 0.01 100.79 1.998 0.004 0.033 0.595 0.026 1.288 0.036 0.000 0.000 3.981 1.89	Px-type Pyf 0352503B pumice Aug 16 53.47 0.24 1.00 7.85 0.40 14.79 22.50 0.28 0.03 100.56 1.975 0.007 0.044 0.242 0.013 0.814 0.891 0.020 0.001 4.006 45.74	Px-type Pyf 0352503A scoria Opx 11 54.38 0.11 0.44 20.36 0.98 23.57 0.90 0.03 0.00 100.76 1.993 0.003 0.019 0.624 0.031 1.288 0.035 0.002 0.000 3.995 1.81	Px-type Pyf 0352503A scoria Opx 20B high Wo 51.85 0.22 1.22 19.38 0.75 23.01 1.65 0.07 0.00 98.14 1.955 0.006 0.054 0.611 0.024 1.293 0.067 0.005 0.000 4.015 3.38	Px-type Pyf 0352503A scoria Aug 5B 52.23 0.48 1.71 8.28 0.36 14.25 21.81 0.42 0.13 99.66 1.951 0.014 0.075 0.259 0.011 0.793 0.873 0.030 0.004 4.011 45.36			

Table 3. Representative chemical compositions of the core of orthopyroxene and augite phenocrysts.

6b, 6d), type-A2 斜長石斑晶は, Hb-type 軽石, Hb-type ス コリアでリムから 50-70 μm, Px-type 軽石でリムから 170-200 μm, Px-type スコリアでリムから 70-80 μm で An が急減し, その後, 低 An 値で結晶が成長している (Fig. 6a, 6b, 6c, 6d). An の急な変化はマグマ混合による液組 成の変化で生じると考えられることから (Sakuyama, 1979), type-A1 と type-A2 斜長石斑晶ではマグマ混合の タイミングが違っていたと考えられる. つまり, type-A2 斜長石斑晶は type-A1 斜長石斑晶よりも早いタイミ ングで珪長質マグマに取り込まれ, 50 µm から最大で

Stage	Hb-type Pyf	Hb-type Pyf	Px-type Pyf
Sample No.	0351101B	0352302A	0352503B
Occur.	pumice	scoria	pumice
Grain No.	Hb 11	Hb 3	Hb 3
wt.%			
SiO ₂	49.27	48.41	49.61
TiO ₂	1.33	1.56	1.38
Al_2O_3	6.28	6.84	6.11
FeO	11.79	12.07	10.93
MnO	0.52	0.36	0.27
MgO	15.33	15.10	16.18
CaO	11.18	11.53	11.24
Na ₂ O	1.24	1.25	1.25
K ₂ O	0.47	0.55	0.50
Total	97.40	97.67	97.46
Cations (O=24)			
Si	7.470	7.349	7.481
Ti	0.152	0.089	0.156
Al	1.123	1.224	1.086
Fe	1.495	1.533	1.378
Mn	0.066	0.046	0.034
Mg	3.466	3.418	3.636
Ca	1.818	1.877	1.816
Na	0.363	0.368	0.367
К	0.090	0.107	0.096
Total	16.043	16.010	16.051
Mg#	69.87	69.04	72.52

Table 4. Representative chemical compositions of the core of hornblende phenocrysts.

200 µm 程度結晶が成長するまで珪長質マグマ溜まり内 に保持されたことになる.ここで,珪長質マグマ溜まり 内での斜長石の成長速度 $(10^{-11}-10^{-10} \text{ mm/s}, \text{Tomiya and}$ Takahashi, 1995) を用いて, An の急減後の type-A2 斜長 石斑晶の成長時間を計算すると, Hb-type 軽石とスコリ アで 10 年から 220 年程度, Px-type 軽石で 50 年から 600 年程度, Px-type スコリアで 20 年から 250 年程度という 結果が得られた.これはいずれも Costa *et al.* (2003) が 示した MgO の拡散時間と調和的である.したがって, type-A2 斜長石斑晶は元々高い MgO 量を有していたが, マグマ混合から噴火までの期間に MgO が拡散したと考 えられる (Fig. 6e, 6f, 6g, 6h). 一方, type-A1 斜長石斑晶 はマグマ混合から噴火までの期間に MgO が拡散するた めの十分な時間がなかったため,高い MgO 量が保持さ れたと考えられる (Fig. 6f, 6h).

以上の議論をした上でも, type-A1 と type-A2 斜長石 斑晶は元々 MgO 量の異なるマグマから晶出したという 可能性を否定できない.しかし,全岩化学組成において, Hb-type と Px-type は,マグマ混合のトレンドをそれぞれ 直線近似できる (Fig. 4).このことは,それぞれの混合 トレンドにおいて,1種類の苦鉄質マグマの存在を示唆 するものである.そのため,MgO 量の異なる斜長石斑 晶は,元々は同一のマグマから晶出したと考える方が自 然である.

本研究では、Hb-type, Px-typeのそれぞれにおいて、2

Fig. 9. Histograms of core compositions of magnetite and ilmenite phenocrysts.

端成分のマグマ混合が生じていたと考え,Hb-typeを形成した珪長質端成分マグマを B_{Hb} マグマ,苦鉄質端成分マ マグマを A_{Hb} マグマ,Px-typeを形成した珪長質端成分マ グマを B_{Px} マグマ,苦鉄質端成分マグマを A_{Px} マグマと する.また,珪長質端成分マグマと苦鉄質端成分マグマ が混合することで形成したマグマを C_{Hb} マグマ(B_{Hb} マ グマと A_{Hb} マグマの混合マグマ), C_{Px} マグマ(B_{Px} マグマ と A_{Px} マグマの混合マグマ)とする.

全岩化学組成において、苦鉄質側は Hb-type と Px-type で2種類に分類できる (Fig. 4). これはマグマ混合にお ける苦鉄質端成分マグマが2種類存在したことを示唆し ている.つまり、A_{Hb}マグマと A_{Px}マグマは異なるマグ マである、一方で、珪長質側は収束している (Fig. 4). したがって、珪長質端成分マグマは1種類であった可能 性がある、B_{Hb}マグマと B_{Px}マグマの関係性については 後述する.

7-2 斑晶コアの平衡関係

上述したように type-A 斜長石斑晶は苦鉄質端成分マ

Stage	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Hb-type Pyf	Px-type Fall	Px-type Fall
Sample No.	0351101B	0351101B	0352302A	0352302A	0461701B	0461701B
Occur.	pumice	pumice	scoria	scoria	pumice	pumice
<u>Grain No.</u>	Mt 42	Ilm 49	Mt 7	Ilm 12	Mt 15	Ilm 22
wt.%						
SiO_2	0.08	0.05	0.08	0.07	0.06	0.05
TiO ₂	5.56	42.35	7.03	37.63	7.14	40.42
Al_2O_3	1.80	0.17	1.83	0.24	1.64	0.23
FeO*	84.26	51.46	82.24	54.83	80.97	52.62
MnO	0.67	1.02	0.54	0.50	0.41	0.51
MgO	1.20	2.27	1.37	2.18	1.52	2.42
CaO	0.00	0.00	0.02	0.02	0.00	0.01
Cr ₂ O ₃	0.02	0.00	0.08	0.00	0.15	0.03
Recalculated	l results					
FeO	33.85	33.47	34.84	30.51	34.39	32.18
Fe_2O_3	56.03	19.99	52.68	27.03	51.77	22.71
Total	99.20	99.32	98.46	98.19	97.08	98.55
	$X_{usp} 0.159$	$X_{ilm} 0.782$	$X_{usp} 0.202$	$X_{ilm} 0.700$	$X_{usp} 0.208$	$X_{ilm} 0.750$
Mg/Mn	3.13	3.93	4.48	7.61	6.51	8.42
Stage	Px-type Pyf	Px-type Pyf	Px-type Pyf	Px-type Pyf		
Sample No.	0352503B	0352503B	0352503A	0352503A		
Occur.	pumice	pumice	scoria	scoria		
Grain No.	Mt 28	Îlm 85	Mt 25	Ilm 6	_	
wt.%					-	
SiO_2	0.10	0.02	0.11	0.14		
TiO ₂	6.82	40.42	6.74	40.43		
Al_2O_3	1.75	0.22	1.57	0.19		
FeO*	83.11	53.34	81.84	51.40		
MnO	0.44	0.51	0.45	0.48		
MgO	1.46	2.29	1.34	1.95		
CaO	0.01	0.00	0.02	0.03		
Cr_2O_3	0.13	0.08	0.07	0.04		
Recalculated	l results					
FeO	34.85	32.41	34.38	32.97		
Fe_2O_3	53.64	23.26	52.75	20.48		
Total	99.20	99.21	97.43	96.71		
	X 0.194	$X_{dm} 0.770$	$X_{\rm max} 0.196$	$X_{ilm} 0.774$		
	-usp + -usp	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	430	in the second second		
Mg/Mn	5.84	7.92	5.24	7.08		

Table 5. Representative chemical compositions of the core of magnetite and ilmenite phenocrysts.

グマ(Aマグマ)由来であり, type-B 斜長石斑晶は珪長 質端成分マグマ(Bマグマ)由来である.また, type-C 斜長石斑晶はAマグマとBマグマが混合した中間組成 のマグマ(Cマグマ)から晶出したと考えられる.

斜方輝石とオージャイトはそれぞれ Mg# の組成幅が 狭く,それぞれの Mg# のピークにおよそ 10 の差がある (Fig. 7). これらは、輝石の Mg-Fe 分配 (Brey and Köhler, 1990) において、平衡関係にない.おそらく、斜方輝石 は B マグマ由来であり、オージャイトは A マグマ由来 である.ただし、Hb-type スコリアにわずかに含まれる 高 Mg# (>70)、高 Wo (=2.9-3.1) の斜方輝石はオージャ イトと平衡関係にあったと考えられ、この斜方輝石に限 り A マグマ (A_{Hb} マグマ) から晶出したと考えられる. また、Px-type スコリアに一つだけ含まれる高 Wo (=3.4) の斜方輝石は、低 Mg# (=67.9) を示す.これは、斜方輝 石内で Ca よりも Mg の拡散が早かったためと考えられ (Tomiya and Takahashi, 2005), 元々は A マグマ (A_{Px} マグ マ) 由来であった可能性がある.しかし,非常に量が少 なく,以下の議論では重要にならないので,これ以上は 言及しない.

ホルンブレンドの Mg# は、斜方輝石とオージャイト の中間的な組成を示す (Fig. 7). Tomiya and Takahashi (1995) は有珠山 1663 年噴火の軽石中に存在する斜方輝 石とホルンブレンドについて、低 Mg# を示す斜方輝石 は珪長質マグマ由来であり、高 Mg# を示す斜方輝石は 苦鉄質マグマ由来であり、それらの中間的な Mg# を示 すホルンブレンドは珪長質マグマと苦鉄質マグマの混合 層から晶出したものと考えた.また、ホルンブレンドに 接する斜長石およびホルンブレンドに含まれる斜長石は 一部 type-B 斜長石斑晶とオーバーラップするが、多くは type-C 斜長石斑晶とー致している (Fig. 5a). これらのこ とからホルンブレンドもまた type-C 斜長石斑晶と同様 にCマグマから晶出したと考えられる.

マグネタイトの Mg/Mn は, Hb-type で Mg/Mn=2-6, Px-type で Mg/Mn=5-10 にピークがあり, イルメナイトの Mg/Mn は, Hb-type で Mg/Mn=3-6, Px-type で Mg/Mn= 6-12 にピークがある (Fig. 9). 噴出物中に共存するマグ ネタイトとイルメナイトは Bacon and Hirschmann (1988) の Mg/Mn 比を用いると平衡に存在したと判断できる. これらは type-B 斜長石や斜方輝石と集斑晶を形成する 場合があることから, B マグマから晶出したと考えられ る. また, Mg/Mn>10 を持つ一部のマグネタイトは type-A 斜長石やオージャイトと集斑晶を形成する場合 があることから, A マグマから晶出したと考えられる.

以上のことから、Aマグマ(A_{Hb}マグマ、A_{Px}マグマ) には、高An組成の斜長石(type A)、オージャイト、わず かにマグネタイトが含まれ、A_{Hb}マグマに限り、少量の 斜方輝石も含まれていたと考えられる.一方、Bマグマ (B_{Hb}マグマ、B_{Px}マグマ)には、低An組成の斜長石(type B)、斜方輝石、マグネタイト、イルメナイトが含まれ、 B_{Hb}マグマには石英も含まれていたと考えられる.そし て、AマグマとBマグマの混合によって形成したCマ グマ(C_{Hb}マグマ、C_{Px}マグマ)からは、中間組成の斜長 石(type C)、ホルンブレンドが晶出した.

7-3 端成分マグマおよび混合マグマの温度

珪長質端成分マグマ(B_{Hb}マグマ, B_{Px}マグマ)の温度 は、平衡共存したと考えられる軽石中のマグネタイトと イルメナイトの化学組成を用いて、QUILF program (Lindsley and Frost, 1992)で推定した.上述したように、 マグネタイトとイルメナイトの共存関係は Bacon and Hirschmann (1988)の Mg/Mn 比を用いて確認した.マグ ネタイトとイルメナイトの元素拡散は非常に速いため、 Nakamura (1995)と同様にサイズの大きい斑晶のコア組 成を用いた.その結果、B_{Hb}マグマについては 750-770℃, B_{Px}マグマについては 800-810℃の値が得られた.

苦鉄質端成分マグマの温度は、平衡共存する斜方輝石 とオージャイトを用いて QUILF program (Lindsley and Frost, 1992) で推定した.上述のように、高温マグマから 晶出した斜方輝石 (Mg#>70, Wo=2.9-3.1) とオージャ イトを含むのは、Hb-type スコリアのみである.した がって、本研究では A_{Hb} マグマの温度推定のみを行った. その結果、 A_{Hb} マグマは 1050℃と見積もられた.

混合マグマ (C_{Hb} マグマ, C_{Px} マグマ)の温度は、平衡 共存するホルンプレンドと斜長石 (type C)を用いて推定 した (Holland and Blundy, 1994). その結果、 C_{Hb} マグマに ついては 780–920℃、 C_{Px} マグマについては 810–920℃と 見積もられた.

Fig. 10. Graph depicting the phase diagram of Mount Pelee rhyolite by Martel *et al.* (2006). Gray parallelograms represent the conditions of B_{Hb} and B_{Px} magmas.

7-4 珪長質端成分マグマの深度

御鉢平カルデラの珪長質端成分マグマ(B_{Hb}マグマ, B_{Px}マグマ)の深度については、モンプレー火山の流紋岩 質のマトリックスガラス (SiO2=75 wt.%) を用いた相平 衡実験の結果 (Martel et al., 2006) を用いて検討した.上 述のように B_{Hb}マグマの温度は 750-770℃であり, B_{Hb}マ グマ由来と考えられる斜長石の An 値のピークは 42-50 程度である (Fig. 5a). また, B_{Px}マグマの温度は 800-810℃であり、B_{Px}マグマ由来と考えられる斜長石の An 値のピークは 46-52 程度である (Fig. 5a). Fig. 10 は Martel et al. (2006)の相平衡実験の結果であり、水に飽和 したメルト中に晶出する斜長石斑晶の An 値が, 温度・ 圧力条件とともに示されている. Hb-type 軽石に含まれ るホルンブレンドおよび Px-type 軽石に少量含まれるホ ルンブレンドはどちらも自形を保っており、反応縁も確 認できない. したがって、珪長質マグマは水に飽和した 状態であったと仮定することができる. このことを考慮 しつつ, Martel et al. (2006) の実験結果に、B_{Hb}マグマ、 B_{Px}マグマの条件を適用すると、B_{Hb}マグマについては 160-220 MPa, B_{Px}マグマについては 150-200 MPa の値が 得られる (Fig. 10). これらは、深さに換算するとそれぞ れ地下約 6-9 km,約 6-8 km に相当する.

7-5 端成分マグマの粘性係数と密度

御鉢平カルデラの軽石は、苦鉄質マグマおよび混合マ グマ由来の斜長石斑晶をあまり含まないことから (Fig. 5a), 珪長質端成分マグマに近い状態で噴出したと考え られる.そこで, 珪長質端成分マグマのメルトの粘性係 数および密度の推定には,和田・他 (2007) が分析した軽 石のマトリックスガラスの化学組成 (Table 6) を用いた.

珪長質端成分マグマの含水量は、上述したように水に 飽和していたと仮定すると、B_{Hb}マグマ (160-220 MPa) と B_{Px}マグマ (150-200 MPa)、どちらもおよそ 5-6 wt.% になる (Moore *et al.*, 1998).

軽石のマトリックスガラスの化学組成と含水量,および推定した温度と圧力を用いて,珪長質端成分マグマのメルトの粘性係数を Giordano *et al.* (2008)の方法により推定すると,B_{Hb}マグマは10^{5.3}–10^{5.9} Pa s, B_{Px}マグマは10^{4.8}–10^{5.3} Pa sとなる。また、マグマの粘性係数は結晶が含まれることによって上昇する。推定した粘性係数を有するメルト中に結晶が浮遊していたと考え,Marsh (1981)の方法によりマグマの粘性係数を推定すると,B_{Hb}マグマは10^{5.8}–10^{6.4} Pa s, B_{Px}マグマは10^{5.3}–10^{5.8} Pa sとなる (Table 7).なお,結晶量については軽石の平均斑晶量 (Hb-type 軽石:22.2 vol.%, Px-type 軽石:18.5 vol.%)を用いた.

珪長質端成分マグマのメルトの密度は, Lange and Carmichael (1990) および Ochs and Lange (1999) を用いて 計算した. また, メルト中には結晶が含まれるため, 軽 石の平均斑晶量と鉱物の密度 (Smyth and McCormick, 1995) を用いてマグマの密度を計算した. その結果, B_{Hb} マグマが 2370-2400 kg/m³, B_{Px}マグマが 2350-2380 kg/m³ となった (Table 7).

Table 6.	Glass c	compositions	of Hb-type	and	Px-type
pumie	ce (after	Wada et al.,	2007).		

		Hb-type		Px-type		
Number		<i>N</i> =43			<i>N</i> =47	
(wt.%)	a^1	b ²	c^3	a^1	b ²	c ³
SiO ₂	75.28	79.16	0.30	76.17	78.06	0.26
TiO ₂	0.20	0.21	0.04	0.24	0.24	0.04
Al_2O_3	11.24	11.82	0.12	11.57	11.86	0.12
FeO*	0.27	0.29	0.11	0.92	0.94	0.11
MnO	0.03	0.03	0.04	0.05	0.06	0.05
MgO	0.11	0.12	0.04	0.17	0.17	0.02
CaO	0.98	1.03	0.06	1.10	1.13	0.04
Na ₂ O	2.70	2.84	0.17	2.85	2.92	0.17
K_2O	4.26	4.48	0.17	4.35	4.45	0.14
Cl	0.01	0.01	0.02	0.16	0.17	0.04
Total	95.09	100.00		97.57	100.00	

a¹ Average of N analyses.

b² Analyses are normalized to 100 wt.%.

 c^3 Standard deviation of N analyses.

苦鉄質端成分マグマの粘性係数,密度に関しては、ま ず、最もSiO₂量の少ないスコリアの化学組成(Hb-type スコリア:SiO₂=56.6 wt.%, Px-type スコリア:SiO₂=57.1 wt.%)について、含水量 2-4 wt.%,マグマの結晶量はス コリアの平均斑晶量(Hb-type スコリア:7.6 vol.%, Pxtype スコリア:10.2 vol.%)として、珪長質端成分マグマ と同様の方法で推定した、含水量については、玄武岩~ 安山岩を端成分マグマに持つ他の火山を参考にした (Cioni *et al.*, 1995; Kinzler *et al.*, 2000).温度については A_{Hb} マグマの推定値を用いた、その結果、 A_{Hb} マグマは $10^{2.1}-10^{2.7}$ Pa s、2490-2560 kg/m³、 A_{Px} マグマは $10^{2.3}-10^{2.8}$ Pa s、2500-2560 kg/m³と推定された (Table 7).

しかし、スコリアは苦鉄質マグマと珪長質マグマ由来 の斜長石を同程度に含み、マグマ混合の影響を受けてい る.実際の苦鉄質端成分マグマはより SiO2 量に乏しく、 推定値よりも粘性係数は小さく、密度は大きくなると考 えられる.本研究では、粘性係数・密度の値は、マグマ 混合モデルを構築する際に用いる.推定した値は苦鉄質 端成分マグマとは異なるが、後述するようにマグマ混合 モデルの議論を大きく変化させるものではない.

7-6 2種類の珪長質マグマの関係性について

 B_{Hb} マグマから晶出した type-B 斜長石斑晶,斜方輝石 斑晶,マグネタイト・イルメナイトは, B_{Px} マグマから晶 出したものよりも An 値, Mg#, Mg/Mn がそれぞれ低く, B_{Hb} マグマには石英が含まれるという特徴がある.ま た,端成分マグマの温度は, B_{Hb} マグマの方がやや低温 である.このように B_{Hb} マグマは B_{Px} マグマよりもより 珪長質であったことを示唆する証拠を有している.した がって,Hb-type 火砕流, Px-type 火砕流が噴出する時点 で,それぞれの噴火に関与した珪長質端成分マグマは異 なっていたと考えられる.しかしながら,推定した両マ グマの深度は誤差を考慮するとほぼ同じであり,独立し たマグマ溜まりとして存在したかは検討する必要がある.

ここで例えば、 B_{Hb} マグマの温度(750-770°C)が Hbtype 火砕流の流出時のマグマ混合によって、 B_{Px} マグマ の温度(800-810°C)まで上昇した可能性について検討す る.デイサイト〜流紋岩質マグマの相平衡実験(Scaillet and Evans, 1999; Holtz *et al.*, 2005)を参考にすると、温度 上昇に伴い、晶出する斜長石の An 値、斜方輝石の Mg# が高くなり、また、石英の安定領域を超える。したがっ

Table 7. Viscosities and densities of the end-member magmas.

Magma	B_{Hb} magma	A _{Hb} magma	B_{Px} magma	A_{Px} magma
Viscosity (Pa s)	$10^{5.8} - 10^{6.4}$	$10^{2.1} - 10^{2.7}$	$10^{5.3} - 10^{5.9}$	$10^{2.3} - 10^{2.8}$
Density (kg/m ³)	2370-2400	2490-2560	2350-2380	2500-2560

Fig. 11. Model of magma plumbing system for the Ohachidaira caldera eruptions. Two eruptions (Hb-type : (a)∼(d) in bottom; Px-type : (e)∼(h) in upper) are separated by a time gap with several hundred to several thousand years. See text for details.

て、 B_{Hb} マグマと B_{Px} マグマの違いはマグマの温度上昇 で説明できる可能性がある.また、安田・他 (2012) が示 したように、Hb-type 火砕流と Px-type 火砕流が流出した 時期には数 100 年 ~ 数 1000 年の差がある.これは Hbtype 火砕流の流出後、マグマ溜まりの温度が上昇するな どによって、マグマ溜まり自体が変化するのに十分な時 間と考えられる.これらのことから、現時点では、独立 したマグマ溜まりを想定する必然性を見出すことができ ないため、1 つのマグマ溜まりを想定する.

7-7 マグマ混合モデルおよびマグマ供給系の進化過程

以上の結果をもとに、御鉢平カルデラにおけるマグマ 供給系の進化過程を推定する (Fig. 11). 御鉢平カルデラ では、噴火前に珪長質マグマ溜まり (B_{Hb}マグマ) が地下 6-9km に存在し、それよりも深部に苦鉄質マグマ(A_{Hb} マグマ)が存在した (Fig. 11a).

初めに、苦鉄質マグマが珪長質マグマの底部に注入した (Fig. 11b). この時、苦鉄質マグマと珪長質マグマの 粘性係数をそれぞれ μ_A , μ_B とすると、両者が等しい場合 ($\mu_A = \mu_B$)には、苦鉄質マグマの注入の駆動力によって2種類のマグマが混合する可能性がある. 一方、珪長 質マグマの粘性係数が、注入する苦鉄質マグマの粘性係 数よりも大きい場合には ($\mu_B/\mu_A > 10^2$)、珪長質マグマの 粘性力によって混合が抑制される (Campbell and Turner, 1986). 御鉢平カルデラの場合は、Hb-type と Px-type の どちらについても珪長質マグマと苦鉄質マグマの粘性係 数の比が大きく (Hb-type: $10^{2.7} < \mu_B/\mu_A < 10^{3.3}$, Px-type:

10^{2.5}<µ_B/µ_A<10^{3.1}), 苦鉄質マグマの注入による混合は 生じなかったと考えられる.したがって、苦鉄質マグマ は珪長質マグマ溜まりの底部に溜まり、密度成層したマ グマを形成した (Fig. 11b). 上述のように, 実際の苦鉄 質マグマの粘性係数は推定した値よりも小さく, 密度は 大きかったと考えられる. これらは珪長質マグマとの粘 性係数の比および密度差を大きくさせるため、実際には 苦鉄質マグマの注入による混合はより抑制され、成層マ グマ溜まりを形成しやすい状況だったと考えられる. 苦 鉄質マグマと珪長質マグマが密度成層した後、その境界 では、type-A1 斜長石を含む苦鉄質マグマの一部が巻き 上げられて珪長質マグマに取り込まれる (Cardoso and Woods, 1996) (Fig. 11b). 取り込まれた type-A1 斜長石の An 値は、周囲の液組成の変化に伴い減少した.この取 り込みは少なくとも噴火の数10年から数100年前に生 じており, 噴火までの期間に低 An 値で結晶が成長した. さらに斜長石中の MgO が拡散し、結果的に type-A1 斜 長石は type-A2 斜長石に変化した (Fig. 11c). また, 苦鉄 質マグマと珪長質マグマの境界では, Hybrid layer (C_{Hb} マグマ)が形成され (Bacon, 1986), そこから type-C 斜長 石およびホルンブレンドが晶出した (Fig. 11c). Type-A 斜長石の MgO 量にはバリエーションがあること (Fig. 5b) やコアからリムにかけて累帯構造を示す斜長石が存 在することからも, 苦鉄質マグマは初めの注入後も断続 的に上昇を行い、マグマ溜まり底部に注入していたと考 えられる (Fig. 11c). 噴出時には、マグマ溜まり上部にあ る B_{Hb}マグマの粘性力によって、C_{Hb}マグマ、A_{Hb}マグマ が引っ張り上げられ火道内を同時に上昇した (Blake and Ivey, 1986) (Fig. 11d). この際,火道の外側では BHbマグマ と C_{Hb}マグマが混合し, 軽石を形成するマグマが生じた. このマグマには, type-A2, type-B, type-C 斜長石斑晶, そ して、ホルンブレンドが含まれる.一方、火道の中央部 ではA_{Hb}マグマが不安定な流れとなり、C_{Hb}マグマ、B_{Hb} マグマを取り込むような混合が生じた (Koyaguchi, 1985; Blake and Campbell, 1986; Freundt and Tait, 1986). Kouchi and Sunagawa (1985) は、接触する玄武岩マグマとデイサ イトマグマの境界に剪断応力が加わった場合、玄武岩マ グマはデイサイトマグマを取り込み、均質なマグマを容 易に形成するが、デイサイトマグマは境界付近に玄武岩 マグマとの縞状構造を形成するものの,均質化は生じず, 組成にほとんど変化がないことを示した. 上述のよう に、火道の中央部を流れる AHbマグマは流れの最中に CHbマグマ, BHbマグマを容易に取り込み, 均質なマグマ を形成したと考えられる. これがスコリアを形成したマ グマである.したがって、火道の外側に軽石を形成する マグマ, 中央部にスコリアを形成するマグマが存在し,

それらのマグマの境界では縞状構造を形成する場合が あったと考えられる.これらが同時に噴出し,軽石,ス コリア,縞状軽石を含む Hb-type 火砕流が流出した.

Hb-type 火砕流の流出後,数100年~数1000年間の休 止期を経て、再び珪長質マグマ溜まり(B_{Px}マグマ)に苦 鉄質マグマ(A_{Px}マグマ)が注入した (Fig. 11e). この苦 鉄質マグマは Hb-type の活動とは異なるマグマである. 珪長質マグマ溜まりは、Hb-typeの活動時のマグマ混合 によって温度が上昇しており、マグマ溜まりに含まれる 斑晶鉱物の種類,化学組成に変化があったと考えられる. また、Px-type 軽石と Px-type スコリアには、AHbマグマ 由来の高 Mg#の斜方輝石や CHbマグマ由来の低 Mg#の ホルンブレンドが含まれない (Fig. 7). したがって, Hbtype の活動時に存在した A_{Hb}マグマ, C_{Hb}マグマは Pxtypeの活動時にはほぼ消失していたと思われる.マグマ 溜まりの進化過程は、Hb-typeの活動とほぼ同様である が (Fig. 11f, 11g, 11h), Px-type の活動では, 噴出物中に中 間組成のマグマから晶出したと考えられる type-C 斜長 石,ホルンブレンドはあまり含まれないことから (Fig.5 and 7), 中間組成のマグマが形成されたものの結晶はあ まり晶出しなかったと思われる. 噴出時には, 降下軽石 の噴出があり、その直後に Px-type 火砕流が流出した.

8. まとめ

御鉢平カルデラ周辺の山麓には、プリニー式噴火によ る降下軽石と岩石学的に異なる2種類の火砕流堆積物 (Hb-type 火砕流と Px-type 火砕流) を確認することがで きる. 地質学的な検討から Hb-type 火砕流が Px-type 火 砕流よりも先に流出しており, これらの火砕流の流出時 期には数100年から数1000年の休止期間がある.2種 類の火砕流堆積物は本質物質として、軽石、スコリア、 縞状軽石を含み、それらはマグマ混合によって形成した 証拠を持つ. 御鉢平カルデラ形成期の活動は Hb-type 火 砕流の流出から始まる.地下 6-9km に珪長質マグマ溜 まりが存在し、そこに苦鉄質マグマが注入することで噴 火に至った、ただし、マグマの注入から噴火までには斜 長石中の MgO が拡散するだけの時間(数10年~数100 年)があったと考えられる.その間,苦鉄質マグマと珪 長質マグマの境界には新たに混合マグマが形成し、そこ から中間組成の鉱物(type-C 斜長石,ホルンブレンド) が晶出した. 噴出時には火道内で苦鉄質マグマ, 珪長質 マグマ,混合マグマが混合し,軽石,スコリア,縞状軽 石を形成するマグマが生じた.その後,数100年から数 1000年の休止を挟み,再び,苦鉄質マグマの注入が生じ, Hb-type と同様にマグマ混合が生じ, Px-type 火砕流が流 出した.

謝 辞

本研究をまとめる段階で,神戸大学の佐藤博明名誉教 授には多くの議論,助言をして頂いた.神戸大学の鈴木 桂子准教授にはセミナーでの議論の他,多くの助言を頂 いた.北海道大学の中川光弘教授にはXRF分析装置の 使用を許可して頂き,ガラスビード作成と分析の際には 同大学の大学院生の皆様に大変お世話になった.地質調 査は北海道教育大学旭川校の学生の協力を得た.大雪山 国立公園内の岩石採取については環境省および文化庁の 許可を得た.また,現地自然保護官事務所,教育委員会 および営林署にご協力を頂いた.本稿は査読者である伴 雅雄博士,東宮昭彦博士,および編集担当である前野深 博士から有益なコメントを数多く頂き,大きく改善した. これらの方々に深く感謝致します.

引用文献

- Bacon, C. R. (1986) Magmatic inclusions in silicic and intermediate rocks. J. Geophys. Res., 91, 6091–6112.
- Bacon, C. R. and Hirschmann, M. M. (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. *Am. Mineral.*, **73**, 57–61.
- Blake, S. (1981) Volcanism and the dynamics of open magma chambers. *Nature*, 289, 783–785.
- Blake, S. and Campbell, I. H. (1986) The dynamics of magma-mixing during flow in volcanic conduits. *Contrib. Mineral. Petrol.*, 94, 72–81.
- Blake, S. and Ivey, G. N. (1986) Magma-mixing and the dynamics of withdrawal from stratified reservoirs. J. Volcanol. Geotherm. Res., 27, 153–178.
- Brey, G. P. and Köhler, T. (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. *J. Petrol.*, **31**, 1353–1378.
- Campbell, I. H. and Turner, J. S. (1986) The influence of viscosity on fountains in magma chambers. J. Petrol., 27, 1–30.
- Cardoso, S. S. S. and Woods, A. W. (1996) Interfacial turbulent mixing in stratified magma reservoirs. J. Volcanol. Geotherm. Res., 73, 157–175.
- Chertkoff, D. G. and Gardner, J. E. (2004) Nature and timing of magma interactions before, during, and after the calderaforming eruption of Volcan Ceboruco, Mexico. *Contrib. Mineral. Petrol.*, **146**, 715–735.
- Cioni, R., Civetta, L., Marianelli, P., Metrich, N., Santacroce, R. and Sbrana, A. (1995) Compositional Layering and Syneruptive Mixing of a Periodically Refilled Shallow Magma Chamber : the AD 79 Plinian Eruption of Vesuvius. J. Petrol., 36, 739–776.
- Costa, F., Chakraborty, S. and Dohmen, R. (2003) Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. *Geochim. Cosmochim. Acta*, 67, 2189–2200.

Druitt, T. H., Costa, F., Deloule, E., Dungan M. and Scaillet,

B. (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. *Nature*, **482**, 77–80.

- Eichelberger, J. C. (1978) Andesitic volcanism and crustal evolution. *Nature*, **275**, 21–27.
- Eichelberger, J. C. (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. *Nature*, 288, 446–450.
- Freundt, A. and Tait, S. (1986) The entrainment of highviscosity magma into low-viscosity magma in eruption conduits. *Bull. Volcanol.*, 48, 325–339.
- Giordano, D., Russell, J. and Dingwell, D. B. (2008) Viscosity of magmatic liquids : A model. *Earth Planet. Sci. Lett.*, 271, 123–134.
- 長谷川健・岸本博志・中川光弘・伊藤順一・山元孝広 (2009) 北海道東部,根釧原野および斜里平野における約3万 5千~1万2千年のテフラ層序と後屈斜路カルデラ火 山の噴火史,地質雑,115,369-390.
- Holland, T. and Blundy, J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. *Contrib. Mineral. Petrol.*, **116**, 433– 447.
- Holtz, F., Sato, H., Lewis, J., Behrens, H. and Nakada, S. (2005) Experimental petrology of the 1991–1995 Unzen Dacite, Japan. Part I : Phase relations, phase composition and pre-eruptive conditions. *J. Petrol.*, **46**, 319–337.
- 勝井義雄・横山 泉・伊藤太一 (1979) 旭岳-火山地質・活 動の現状および防災対策.北海道における火山に関す る研究報告書,第7編,北海道防災会議,42 pp.
- 勝井義雄・加藤 誠・河内晋平・和田恵治 (1988) 層雲峡 天城岩付近の地質. 1987 年北海道層雲峡溶結凝灰岩 崩壊とその災害に関する調査研究, 9-16.
- Kinzler, R. J., Donnelly-Nolan, J. M. and Grove, T. L. (2000) Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H₂O in the generation of silicic magmas. *Contrib. Mineral. Petrol.*, **138**, 1–16.
- 国府谷盛明・松井公平・河内晋平・小林武彦 (1966)5 万分 の1地質図幅および説明書「大雪山」. 北海道開発庁, 47 pp.
- 国府谷盛明・小林武彦・金 詰祐・河内晋平 (1968)5万分 の1地質図幅説明書「旭岳」. 北海道開発庁, 52 pp.
- Koyaguchi, T. (1985) Magma mixing in a conduit. J. Volcanol. Geotherm. Res., 25, 365–369.
- Kouchi, A. and Sunagawa, I. (1985) A model for mixing basaltic and dacitic magmas as deduced from experimental data. *Contrib. Mineral. Petrol.*, **89**, 17–23.
- Lange, R. A. and Carmichael, I. S. E. (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. *Rev. Mineral.*, 24, 25–64.
- Lindsley, D. H. and Frost, B. R. (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine and quartz : Part I. Theory. *Am. Mineral.*, 77, 987–1003.
- Marsh, B. D. (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. *Contrib. Mineral. Petrol.*, **78**, 85–98.

- Martel, C., Radadi Ali, A., Poussineau, S., Gourgaud, A. and Pichavant, M. (2006) Basalt-inherited microlites in silicic magmas : Evidence from Mount Pelee (Martiniqu, French West Indies). *Geology*, 34, 905–908.
- 目次英哉 (1987) 御鉢平カルデラの火山活動史. 層雲峡 博物館研究報告, 7, 1-8.
- Moore, G., Vennemann, T. and Carmichael, I. S. E. (1998) An empirical model for the solubility of H₂O in magmas to 3 kilobars. *Am. Mineral.*, **83**, 36–42.
- Nakagawa, M., Hiraga, N. and Furukawa, R. (2011) Formation of a zoned magma chamber and its temporal evolution during the historic eruptive activity of Tarumai Volcano, Japan : Petrological implications for a long-term forecast of eruptive activity of an active volcano. J. Volcanol. Geotherm. Res., 205, 1–16.
- Nakamura, M. (1995) Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption. *Geology*, 23, 807–810.
- 中村有吾・平川一臣 (2000) 大雪御鉢平テフラの岩石記 載学的特徴.火山, **45**, 281-288.
- 中村有吾・平川一臣・長沼 孝 (1999) 北海道白滝遺跡と 周辺地域のテフラ.地学雑, 108, 616-628.
- Ochs, F. A. and Lange, R. A. (1999) The density of hydrous magmatic liquids. *Science*, 283, 1314–1317.
- 大沼靖治・和田恵治 (1991) 大雪山, 旭岳の地質と岩石. 北海道教育大学大雪山自然教育研究施設研究報告, 26, 45-53.
- Pallister, J. S., Hoblitt, R. P. and Reyes, A. G. (1992) A basaltic trigger for the 1991 eruptions of Pinatubo volcano? *Nature*, 356, 426–428.
- Sakuyama, M. (1979) Evidence of magma mixing : Petrological study of Shirouma-Oike calc-alkaline andesite volcano, Japan. J. Volcanol. Geotherm. Res., 5, 179–208.
- Sakuyama, M. (1981) Petrological study of the Myoko and Kurohime volcanoes, Japan : crystallization sequence and evidence for magma mixing. J. Petrol., 22, 553–583.
- 佐藤鋭一 (2005) 大雪火山, 御鉢平カルデラと旭岳の岩 石学的研究一特にマグマ供給系の時間変化について 一. 北海道教育大学修士論文. 27 pp.
- 佐藤鋭一・和田恵治 (2005) 大雪火山, 御鉢平カルデラ噴 出物に見られるマグマ混合過程.日本火山学会 2005 年度秋季大会講演予稿集, p 31.
- 佐藤鋭一・和田恵治 (2007) 大雪火山群, 旭岳におけるマ グマ混合と3種類の端成分マグマ. 岩石鉱物科学, 36, 125-139.
- 佐藤鋭一・和田恵治 (2010) 大雪火山噴出物の露頭紹介 1 一大函の御鉢平カルデラ噴出物一.北海道教育大学自 然教育研究施設研究報告, 44, 1-5.
- 佐藤鋭一・和田恵治 (2011) 大雪火山噴出物の露頭紹介 2 一天人峡の御鉢平カルデラ噴出物一御鉢平カルデラか ら流出した 2 種類の火砕流の流出順序.北海道教育大 学自然教育研究施設研究報告, 45, 1-8.
- 佐藤鋭一・和田恵治・中川光弘 (2005) 大雪火山, 御鉢平 カルデラおよび旭岳の岩石記載と岩石の化学組成. 北 海道教育大学自然教育研究施設研究報告, **39**, 1-16.
- 佐藤博明 (1996) 雲仙普賢岳噴出物の岩石組織と噴火モ デル. 地質学論集, 46, 115-125.

- Scaillet, B. and Evans, B. W. (1999) The June 15, 1991, eruption of Mount Pinatubo : I. Phase equilibria and Preeruption *P-T-fO*₂-*f*H₂O conditions of the dacite magma. *J. Petrol.*, **40**, 381–411.
- 新エネルギー・産業技術総合開発機構 (NEDO) (1990) 平 成元年度全国地熱資源総合調査(第3次,十勝地域地 熱資源総合調査,広域熱水流動系調査十勝地域,火山 岩分布・年代調査)報告書要旨.新エネルギー・産業 技術総合開発機構,227 pp.
- Smyth, J. R. and McCormick, T. C. (1995) Crystallographic data for minerals. In Mineral Physics and Crystallography : a Handbook of Physical Contents 2 (Ahrensm T.A. ed), 1–17. Amer. Geophysi. Union, Washington, D. C.
- Sparks, R. S. J., Sigurdsson, H. and Wilson, L. (1977) Magma mixing : a mechanism for triggering acid explosive eruptions. *Nature*, 267, 315–318.
- 隅田まり (1988) 斜里地域におけるテフラ層序.知床博 物館研究報告, 9, 19-32.
- 隅田まり (1996) 清里~斜里地域に分布する後期更新世 テフラ層一屈斜路, 摩周起源のテフラと広域テフラー. 日本第四紀学会編第四紀露頭集一日本のテフラ, p 105.
- Tomiya, A. and Takahashi, E. (1995) Reconstruction of an evolving magma chamber beneath Usu volcano since the 1663 eruption. J. Petrol., 36, 617–636.
- Tomiya, A. and Takahashi, E. (2005) Evolution of the magma chamber beneath Usu volcano since 1663 : a natural laboratory for observing changing phenocryst compositions and textures. *J. Petrol.*, **46**, 2395–2426.
- Toya, N., Ban, M. and Shinjo, R. (2005) Petrology of Aoso volcano, northeast Japan arc : temporal variation of the magma feeding system and nature of low-K amphibole andesite in the Aoso-Osore volcanic zone. *Contrib. Mineral. Petrol.*, 148, 566–581.
- 和田恵治・中村瑞恵・奥野 充・佐藤鋭一 (2003) 大雪山, 旭岳における最新の噴火年代について.日本火山学会 2003 年度秋季大会講演予稿集, p 158.
- 和田恵治・石崎直人・佐藤鋭一 (2007) 根釧台地, 別海町 中春別露頭で同定された大雪山・御鉢平カルデラ起源 の広域火山灰.北海道教育大学自然教育研究施設研究 報告, 41, 55-65.
- 若佐寛子・中川光弘・斉藤 聡 (2005) 大雪火山, 御鉢平 カルデラに関する岩石学的研究. 日本火山学会 2005 年度秋季大会講演予稿集, p 32.
- 若佐寛子・中川光弘・斉藤 聡 (2006) 大雪火山, 御鉢平 カルデラ形成時のマグマ供給系の構造と噴火プロセ ス.月刊地球, 28, 296-301.
- 山元孝広・伊藤順一・中川光弘・長谷川健・岸本博志 (2010) 北海道東部,屈斜路・摩周カルデラ噴出物の放射炭素 年代値,地質調査研究報告, **61**, 161-170.
- 安田裕紀・佐藤鋭一・和田恵治・鈴木桂子 (2012) 古地磁 気測定により推定される大雪山, 御鉢平火砕流の堆積 期間. 日本地球惑星科学連合 2012 年大会講演予稿, SVC54-P03.

(編集担当 前野 深)