光波測距の数値気象モデルに基づく大気補正 一浅間山への適用一

高木朗充****•福井敬一*•新堀敏基*•飯島 聖***

(2009年8月31日受付, 2010年1月15日受理)

Atmospheric Correction in EDM by Using the JMA Numerical Weather Model: Application to Measurement at Asamayama Volcano

Akimichi TAKAGI*, **, Keiichi FUKUI*, Toshiki SHIMBORI* and Sei IIJIMA***

Electro-optical distance measurement (EDM) and Global positioning System (GPS) observation are applied to monitor precise time variation of the ground deformation at active volcanoes. But observations using electromagnetic waves such as these are accompanied by errors associated with inhomogeneity of refractive index along the propagation path in atmosphere. In particular, the inhomogeneity in troposphere degrades the accuracy of positioning. An improved atmospheric correction method in EDM was developed, based on the Japan Meteorological Agency (JMA) operational mesoscale analysis (MANAL) for numerical weather prediction. In this method, the precise velocity and ray path of propagated lights are estimated from the adequate vertical profile of refractive index by MANAL. Consequently distance along the bowing ray path measured by EDM is corrected to be precise slope distance. Applying this procedure to EDM data at Asamayama volcano, the seasonal fluctuation caused by inhomogeneity of refractive index in atmosphere was removed entirely.

At Asamayama volcano, very small eruptions occurred in August 2008 since the latest 2004 eruption, and then a small eruption occurred in February 2009. Based on the EDM observation by Meteorological Research Institute and Karuizawa Weather Station, we detected that the slope distance had been shortened since August 2008. Slope distances from the observation site to reflectors were corrected by using MANAL in this correction method. Though slope distances have increased in length at a rate of 1–7 mm per year since the 2004 eruptions, ground deformation turned over to inflation in August 2008 and slope distances shortened to 5–28 mm per five months by January 2009.

In order to account for those observation data, we assumed a pressure source beneath the summit crater, whose depth and volume increase were estimated to be at a height of 2380 m above sea level (200 m under the summit) and $15,300 \text{ m}^3$, respectively.

By developing this atmospheric correction method in EDM with the use of the JMA's numerical weather model, it became possible to precisely detect ground displacements and thus to reliably estimate their sources. Therefore, this method is very effective to monitor activity of volcanoes.

Key words: Atmospheric Correction, EDM, JMA numerical weather model, Asamayama volcano, MANAL

*	〒305-0052 茨城県つくば市長峰 1-1 気象研究所地震火山研究部 Seismology and Volcanology Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052 Japan. 現所属:〒100-8959 東京都千代田区霞ヶ関 3-2-2 文部科学省研究開発局地震・防災研究課 Present address: Earthquake and Disaster-Reduction Research Division, Research and Development Bureau, Ministry of Education, Culture, Sports, Science and	***	Technology - Japan. 〒389-0111 長野県北佐久郡軽井沢町大字長倉字北倉 1706-8 気象庁浅間山火山防災連絡事務所 Asamayama Resident Office for Volcanic Disaster Miti- gation, JMA, 1706-8, Kitakura, Nagakura, Karuizawa, Nagano, 389-0111, Japan. Corresponding author: Akimichi Takagi e-mail: atakagi@mext.go.ip
	Ministry of Education, Culture, Sports, Science and		e-mail: atakagi@mext.go.jp

1. はじめに

光波測距は、2地点間の斜距離を測定するための比較 的簡便な観測手法である.測量手法として広く普及した GPS 観測のように、3次元的な変位ベクトルを測定する ことはできないものの、一定の条件下であれば GPS 観 測よりも精度の高い斜距離の観測が可能なこともある. しかも反射点には電力の必要がなく、あらかじめ反射プ リズムさえ設置しておけば地殻変動のモニタリングが可 能である.火山監視においては、活動が活発になっても 山麓から安全を確保しながら測定できることから、GPS 観測が普及した現在でも今なお有効な観測手法である (例えば、斎藤・他、2003).

光波測距の原理は、変調した異なる複数の周波数の射 出波と受光波の位相差から、斜距離をmm単位の精度で 測定する(須田, 1994).ところが光波が伝搬する大気の 屈折率が一様でないと、伝搬速度あるいは波長は伝搬経 路上で一定とならない.屈折率は媒質の気温、気圧、湿 度に依存する.そのため大気の不均質を補正して正確な 斜距離を算出するためには、伝搬経路上のすべての気象 状態を測定することが望ましいが、現実には困難であ る.そのため、一般には器械点の一箇所、あるいは器械 点と反射点の二箇所の気象データを測定し、全経路の代 表値として大気補正に用いることが多い(以下,これを 従来手法と呼ぶ).

ところが、火山地域における観測では器械点と反射点 の標高差が大きいこと、あるいは活動的な火山では安全 確保の観点から測線が長距離となることが多い.この場 合、1~2箇所だけで測定した気象データによる大気補正 では、正確な斜距離の算出には不十分である.

これまで,光波測距観測の大気補正について多くの試み がなされてきた.例えば須田 (1970) や Fujii and Miyamoto (1987) は,地表面付近の大気の鉛直分布を簡便に推定す るための式を提案した.また,木股・山内 (1981) は大気 境界層の気温の鉛直分布の観測から日の入り前後の測定 が最も精度が高まると報告し,実測データから屈折率の 鉛直プロファイルを明らかにするため,係留ゾンデや気 象鉄塔の観測から低層の気象観測がなされた(田島・他, 1970;木股, 1986).

光波測距の正確な補正を行うには、地表付近の大気の 屈折率分布をより正確に把握する必要があるが、経験式 だけでは限界があり、また気象観測に労力をかけすぎる と、光波測距観測の簡便で比較的精度の高い地殻活動モ ニタリング手法という利点からはかけ離れてしまうこと になる.

一方で、天気を予測するための数値気象モデルは計算 機の進歩とともにより高分解能になり予報精度が向上し ている.高木・他(2005)は2004年浅間山噴火活動前後 の光波測距データに対して、20kmの水平格子間隔の数 値気象データを利用した補正を試み、簡単な報告をし た.しかし、それよりも高分解能の数値気象データに対 しての検証は行っていない.そこで小論では、気象庁の 分解能の異なるモデルの数値気象データを用いて大気の 屈折率を計算し、光波測距の補正に適用した場合の比 較・検証を行い、現状における、より適切な大気補正に ついて報告する.また、リアルタイム補正を行うために 必要となる予報値を用いた補正についてもその精度を検 証した.

さらにこの手法を浅間山における測距データに適用す ることで、斜距離の時系列の S/N 比が著しく改善され、 活動静穏期に山頂部が収縮し、活動期には膨張すること を検出することができた.

2. 数値気象データ

気象庁では、日々の気象予報業務のために数値予報資料を作成している.このための数値予報モデルには、地球全体を予報領域とする全球モデルや、全球モデルの予報結果を側面境界値として日本周辺をより細かく予報するメソモデル等の予報モデルがあり、現業運用されている.2009年8月現在、各モデルの水平方向の格子点間隔は、全球モデルが20km、メソモデルは5kmである。一方、鉛直方向の格子点間隔は一定ではなく、地表近くほど密で上層ほど疎なモデル面の構造を有している.また

Table 1. History of two ANALs' horizontal resolution used to this atmospheric correction.

Horizontal resolution of analysis	Mar.1	, 2006 Nov.21	, 2007 Apr.7	, 2009
20km-ANAL	RANAL	every 6h,	GANAL	every 6h,
	20km grid	l, 40 layers	20km grid	l, 60 layers
5km-ANAL	MANAL every 6h,	MANAL	every 3h,	MANAL every 3h,
	10km grid, 40 layers	10km grid	1, 40 layers	5km grid, 50 layers

Fig. 1. Distribution of horizontal grid points of every ANALs around Asamayama volcano. Squares, circles and diamonds denote 20km-RANAL, 10 km-MANAL and 5km-MANAL, respectively.

モデル地形に対して滑らかな層構造を形成しているので、 同一モデル面でも場所によってモデル面高度が異なる.

全球モデルやメソモデルを用いて数値予報を行うため には、初期条件が必要である。初期条件は現在の大気の 状態をできるだけ精確に捉えたものでなければならない。 この大気の状態を、離散的に配置された格子点で代表し て精確に求める作業を客観解析といい、大気科学に加え 統計学を駆使して、初期条件となる格子点データを作成 する。以後、客観解析を ANAL、格子点データを GPV と 記す.

小論では、分解能の異なる数値予報モデルに対する ANALによるGPVを光波測距の大気補正に適用し、補 正結果を比較する.適用する測距データは2003年5月 から2009年7月までであるが、この期間中に数値気象 モデルの改良が行われており、各ANALのGPVの空間 分解能も上がっている.大きな変更として2007年11月 20日までは水平60km格子の全球モデル(GANAL)、20 km格子の領域モデル(RANAL)、及び10km格子のメ ソモデル(MANAL)の3つが共存していたが、2007年11 月21日以降はRANALが廃止され、GANALが格子間 隔20kmとなり、それまでのRANALと同等の水平分 解能になった.また、2009年4月7日からは、MANAL

Fig. 2. Distribution of reflector sites (M1-M5) and observation site (a), and topographical profile (b).

の水平分解能が 10 km から5 km となり、力学過程が静 力学モデルから非静力学モデルとなった(本田・澤田、 2009). このように分解能や計算手法の変遷はあるが、小 論では光波測距の大気補正に使用した客観解析値とし て、20 km 格子の ANAL (20 km-ANAL と記す) と5 km格子の ANAL (5 km-ANAL 記す. ただし 2009年3月ま では 10 km 格子)の2種類の空間分解能をもつ GPVを 取り扱う. その詳細を Table 1 に示す.また、各 ANAL の浅間山周辺における水平格子点分布を Fig. 1 に示す.

補正に用いた GPV の解析時刻は,2006 年 3 月以降の 5km-ANAL は 00 UTC (協定世界時)を含む 3 時間毎であ り,それ以前の 5km-ANAL と 20 km-ANAL は 00 UTC を 含む 6 時間毎である.また,大気補正処理では各 ANAL の GPV を,測距時刻と器械点直上に対して時間・空間 的に線形内挿した値を用いた.

3. 光波測距データ

2002 年7月に浅間山山頂火口縁から約500m南方の 前掛山南縁の3カ所(M1, M2, M3)に3素子の反射点を 設営した(Fig. 2). その後,新たに2005 年8月にM2と M3の間にM4を,2005 年9月に火口縁南側にM5を設 営した.反射点は全てGPS繰り返し観測用のベンチ

Instrument	Wave length	Standard condition (pressure, temperature and humidity)	Measurement period	Specific of measurement
Geodimeter 6000	0.885µm	1013.25 hPa 20 ℃ 60%	May, 2003 • July, 2009	Manual Non-telemeter Fair-weather
Leica Geosystems TPS1200	0.670µm	1013.25 hPa 12 °C 60%	Mar., 2005 · Feb., 2007	Automatic Telemeter Every hour

Table 2. Specifications of electro-optical distance meters.

Table 3. Location of reflector sites and observation site for EDM at Asamayama volcano.

Si	ite	Latitude (deg.)	Longitude (deg.)	Altitude (m)	Note
KV	ΝS	36.34220	138.54711	1010 (Manual) 1006 (Automatic)	Manual and automatic measurement at Karuizawa Weather Station.
Μ	11	36.40121	138.51802	2455	Reflector site.
Μ	12	36.40151	138.52200	2443	Reflector site.
Μ	13	36.40348	138.52698	2443	Reflector site.
Μ	[4	36.40190	138.52388	2433	Reflector site with GPS receiver.
M	15	36.40511	138.51961	2546	Reflector site.

マークを兼ね, M4 では 2006 年 5 月以降現地集録型の GPS 連続観測を継続している.

器械点は、山頂から約8km南南東の軽井沢測候所 (KWS)とした.測候所測風塔に測距儀の台座を固定し ておき,好天時に測距儀を設置して手動による繰り返し 観測を行った.反射点までの斜距離は7~7.5km,比高は 約1.5kmである.2003年5月から測定を開始し,2009年 7月までに436回の測定を行った.この測定ではGeodimeter 6000型を用いた.また、2005年3月から2007年2 月までの2年間は、自動視準式光波測距儀(Leica Geosystems 社, TPS1200)で自動観測も実施した.測定サン プリングは1時間毎であり,設置場所はKWSの遠望観 測室(繰り返し光波測距の器械点の下方4.2m)である. なお、連続観測の器械点からは視程障害物のためM2を 観測できていない.以後,これらの光波測距により得ら れたデータセットを,それぞれ繰り返し測距データ、及 び自動測距データと呼ぶことにする.

測距儀の仕様等を Table 2 に示す.また, Fig. 2 に観測 点配置と,器械点から反射点までの地形断面を示す. Table 3 に観測点の位置を示す.

4. 補正方法

光の伝搬速度は大気の屈折率によって変化する.よっ て器械点と反射点の相対的な位置が不変であっても、伝 搬経路上の大気状態に時間的、空間的不均質がある場合 には,屈折率,つまりは伝搬速度が一定とはならないの で,測定する位相に影響を及ぼし,結果的に斜距離が変 化したように見える.

さらに、伝搬する大気の屈折率が一様でないと光波は 屈折して経路が曲げられる.よって伝搬距離を正確に求 めたとしても、斜距離を正確に求めたことにはならない.

これら、伝搬速度の補正と伝搬経路の補正が不完全で あった場合に生じる補正斜距離のばらつきを光波測距に おける気象ノイズと呼ぶことにする.この気象ノイズを 軽減するには、正確な大気の屈折率分布を知り、適切な 補正を行うことである.

4-1 屈折率の推定

真空中の光速度を *C*, 大気の屈折率 *n* の中を進む光速 度を *v* としたとき, それらの関係は,

$$n = \frac{C}{v} \tag{1}$$

と表されるので、大気の屈折率nからvが求まる. 伝搬 経路上の全てで大気の屈折率がわかれば、正確な光速度 が推定でき、正確な位相を測定できる. 真空中の屈折率 は 1.0 であり、標準大気(高度 0 km,気温 15 °C,気圧 1013.25 hPa)における可視光の屈折率は約 1.0003 であ る.

一般にある地点での屈折率 n は,乾燥大気と水蒸気部 分による寄与により,

$$(n-1)10^6 = m_1(\lambda)\frac{p}{T} + m_2(\lambda)\frac{e}{T}$$
(2)

と表現される. ここで, p は気圧 (hPa), e は水蒸気圧 (hPa), T は気温 (K) であり, $m_1 \ge m_2$ は波長 λ (μ m) に 依存する係数である. 屈折率の波長依存を表す経験式は 多い (例えば, Ciddor, 1996; Hill *et al.*, 1980) が, 小論 では光波測距の大気補正で汎用されている Barrell and Sears (1939) の式の近似式 (須田, 1994) の表現を一部書 き換えた,

$$(n-1)\,10^6 = n_d \cdot \frac{p/p_0}{T/T_0} + n_w \cdot \frac{e/p_0}{T/T_0} \tag{3}$$

を用いた. ここで, $T_0=273.15$ (K), $p_0=1013.25$ (hPa) とする. λ に依存する係数 n_d および n_w は,

$$n_d = (n_g - 1) 10^6$$

= 287.6155 + 4.88660 \lambda^{-2} + 0.06800 \lambda^{-4} (4)

$$n_w = -(47.424 - 0.5168\lambda^{-2}) \tag{5}$$

と表される.ngは大気の標準屈折率である.

ANAL の GPV は,気圧,気温,及び露点が与えられる. ここで水蒸気圧 e は,露点 T_a ($^{\circ}$ C) から Tetens (1930) の式,

$$e = 6.11 \times 10^{\frac{1.57a}{237.3 + Td}} \tag{6}$$

を用いて求めている.

本補正手法では, ANAL の GPV から伝搬経路上の気 圧, 気温, 及び (6) 式で求めた水蒸気圧を内挿推定し, 屈折率を (3)~(5) 式を用いて計算し, それに層厚の重 みをつけた平均値を使用した.

4-2 伝搬速度の補正

一般に,光波測距儀には射出する光波の波長が設定されている他,伝搬距離の読み取り値そのものが大気補正 を必要としない斜距離に相当する,測距儀固有の標準状態の気象値が設定されている (Table 2).

実際の補正では、ANALのGPVから(3)~(5)式を用 いて算出した伝搬経路上の大気の屈折率の平均値と、測 距儀に設定された標準状態を(3)~(5)式に代入して算出 した屈折率の差を、伝搬距離の読み取り値に乗じた値が 伝搬距離の補正値となり、計測した伝搬距離の読み取り 値からこれを差し引いた距離が補正後の伝搬距離となる.

4-3 伝搬経路の補正

屈折率の不均質な大気の分布によって光波の伝搬経路 は屈折するため、伝搬経路に対する補正も必要である. そこで伝搬経路の領域の大気の状態を近似的に水平多層 と仮定し、器械点 (KWS) 直上の ANAL のモデル面の

Fig. 3. Velocity and ray path effect on slope distance caused by inhomogeneity of refractive index along the propagation path in atmosphere. Ray path is bended propagating through the inhomogeneous atmosphere (a). Seasonal changes' ratios of velocity and path effect calculated by actual JMA's GPV are ± 15 ppm and ± 0.5 ppm, respectively (b).

高さ毎に層境界を設定し、スネルの法則に基づき波線追跡法で伝搬経路を推定した (Fig. 3a). 観測を行った浅間山周辺では、 器械点と反射点の標高差約 1.5 km の間に、 モデル面が 11 層存在する. Fig. 3a は、KWS から M1 ま での伝搬経路の屈折の様子を 2005 年 10 月 20 日 06UTC の実際の MANAL の GPV から推定したものである. た だし、水平方向に 2000 倍に強調している.

なお、器械点と反射点の座標は期間を通して固定とし て近似した.測線の伝搬経路を季節によって異なる様々 な現実の気象条件で計算した結果、経路の屈曲によって 生じる距離の伸びは最大でも約3ppmであった.この程 度であれば、仮に地殻変動によって反射点が1m変動し たとしても固定近似による誤差は0.003mm以内であり 無視できる量であることを確かめた.

4-4 伝搬速度と伝搬経路への補正の効果

以上の手法を用い,補正斜距離に対する伝搬速度の補 正と伝搬経路の補正の効果を GPV を用いて計算して, 斜距離からの比の変化として比較した (Fig. 3b). 気象の 季節変化がもたらす伝搬速度の変化の影響は,温暖期に 大きく寒候期に小さいことがわかる. 温暖期の屈折率 n が相対的に(3)式により小さくなり,これは(1)式より 光の伝搬速度 v が大きくなることを示す. つまり測距儀 が測定する波数は減るため,補正をしなければ結果的に 温暖期に距離を短く測定していることを意味する. 補正 の効果の季節変動の振幅は±15 ppm 程度である. なお, この値は測距儀に設定された標準状態の屈折率から1を 引いた値(約285 ppm)からの差で示されており,絶対量 自体には意味はない.一方,伝搬経路の影響の効果の季 節変動の振幅は±0.5 ppm 程度であり,伝搬速度の影響 による振幅の1/10以下である. また短周期成分の標準 偏差も同程度に小さい.

5. 補正結果

5-1 補正手法の違い

以上の補正手法を測距データに適用し,本手法による 補正結果の定量的な評価を行う、測距データは、観測頻 度の高い TPS1200 による自動測距データを用いた.対 象期間は 2005 年 3 月から 2007 年 2 月までの約 2 年間に すぎないが、1時間毎の高サンプリングの測定結果であ る. この期間は、浅間山では顕著な地殻変動はなかった. この間、器械点と反射点の相対的位置は不変であったと すると, 補正処理が完全に行われているとすれば, 斜距 離の標準偏差は0に近いはずである。しかし、気象の変 化は日周変動と年周変動が顕著であり、光波測距に対し て適切な気象補正がなされていない場合、日射に伴う日 変化や大気擾乱に伴う短周期ノイズ、あるいは季節の違 いによる年周期ノイズが重畳する. そこで、補正が適切 に行われているかどうかの尺度として、この期間の補正 処理後の斜距離時系列の標準偏差を用いることにする. 標準偏差が小さいほど、気象補正が適切に行えているこ とを意味する.

Fig. 4に,器械点 KWSから反射点 M1の測定距離に MANAL (5km-ANAL)を用いて本手法の補正処理をし た斜距離の時系列を示す.比較のため,未補正の場合と, 従来手法である器械点の実測気象データのみを使用した 補正結果も示す.図中の括弧内の数値は,各補正手法に よって算出された斜距離のこの期間の平均に対する標準 偏差 (mm)である.従来手法による大気補正では気象/ イズの年周変動が残存しており,その位相は未補正の場 合と半波長のずれがある.このことは従来手法が気象の 季節変化に対して過大補正していることを示す.一方, 本手法による気象/イズの年周変動は極めて小さい.標 準偏差 7.4 mm は短周期の気象変動に起因する/イズ振 幅と考えてよく,年周期の/イズ振幅は0に近い.また 斜距離の絶対量は,本手法の補正によって従来手法と比

KWS-M1 Slope distance [m]

Fig. 4. Slope distance from KWS to M1 measured with auto EDM system from March, 2005 to February, 2007. Distance corrected with MANAL has smaller seasonal noise than that by the conventional correction. Parenthetic figures show standard deviation (mm).

べ約10cm 大きく修正された.

M1 以外の反射点との斜距離も、これらの傾向は同様 であった。

5-2 ANAL の空間分解能の違い

次に、本手法を、時間分解能は低いが、2回の噴火活動 期を含む2003~2009年の長期の繰り返し測距データに 適用し、空間分解能の異なるANALのGPVによる補正 結果の違いを比較する. Fig. 5 に、KWSからM2の繰り 返し測距データに対する20 km-ANALと5 km-ANAL による補正結果を示す.比較のため、未補正の場合と、 従来手法である器械点の実測気象データのみを使用した 補正結果も示す.

従来手法と比べ, 20km-ANAL, 5km-ANAL による結 果の方が年周ノイズも短周期ノイズも小さいことがわか る. 浅間山では 2004 年 9 月~12 月に噴火活動があった. この期間、従来手法でも測線が短縮(火口が膨張するこ とを意味する) していることがわかるが, 従来手法では ノイズが大きいため変動の定量的評価は困難である.し かし本補正手法では約2cmの短縮があったことが明瞭 にわかる.また,2008年8月の微噴火から始まった活動 度の高まりは2009年2月に小噴火をもたらしたが、こ の期間にも斜距離の短縮があった.しかし従来手法では ノイズに埋もれ検知することすら不可能である.また, 20 km-ANALを使った補正では短縮の傾向が読み取れ るが,定量的評価は困難であり,従来手法と比べてもそ れほど改善していないことがわかる.一方,5km-ANAL を使った補正では、1cm以上の明瞭な短縮を読み取れる. なお、この期間、20km-ANAL には数値モデルの変更

Fig. 5. Slope distance corrected with 20 km-ANAL and 5 km-ANAL from KWS to M2 measured with manual EDM from 2003 to 2009. Triangles and arrows show the eruptions at Asamayama.

があった. 2007 年 10 月までは補正に RANAL (水平格 子間隔 20 km の領域モデルの客観解析値)を利用してい たが, 2007年11月にこれが廃止され, GANAL (全球モ デルの客観解析値)の格子間隔が60kmから20kmとな り、それまでの RANAL に置き換わった. このように大 気補正に用いる数値気象モデルに変更が生じることによ り、補正結果にも影響が出ている可能性がある。2007年 後半以後の20km-ANALの補正結果はばらつきが大き いが、それがモデルの変更による可能性も完全には否定 することはできず、今後検討していく課題である.5km-ANAL も、水平格子間隔 10km の静力学モデルをベース とした4次元変分法データ同化システム(石川・小泉, 2002)によるものだったが,2009年4月以降は格子間隔 5kmの非静力学モデルをベースとした同化システムに 移行した(本田・澤田, 2009). 2009年以降の5 km-ANAL による補正結果の斜距離がわずかな伸縮を繰り 返しているように見える. 浅間山は 2009 年 5 月頃まで ごく小規模な噴火を繰り返しており、この斜距離の伸縮 が火山活動に対応するものなのか、それとも気象モデル の変更によるノイズレベルの変化であるのかを判断する には、少なくとも1年以上の長期間にわたってデータを

蓄積して検証する必要がある.

このように、予報業務の改善のために気象モデルが数 年ごとに改良されていくため、光波測距データを完全に 同一の条件で補正して比較することは困難であった.し かし、浅間山で観測された長期の測距データに対して、 分解能の異なる2つのANALを使用して補正した結果、 器械点だけの気象データで補正を行う従来手法と比べ て、飛躍的に高い精度が得られ、現状では5km-ANAL を使用した方がより高精度に補正できることがわかっ た.

6. 客観解析値と予報値による補正結果の比較

以上から, ANAL による大気補正は従来手法の補正 と比べて明らかに改善された手法であることを示し,活 動監視に有効なことが明らかになった.しかし火山活動 モニタリングのため,現業的にリアルタイムでこの補正 手法を用いるには, GPV が即時取得できる必要がある. しかし ANAL は,データセットが利用できるまでに数 時間かかるので,リアルタイム監視のためにはそれ以前 の ANAL を基に作成された予報値(以下, FCST と略 す)を使用せざるを得ない.

Fig. 6. Standard deviation of corrected distance. Open squares show S.D. of distance corrected by ANAL. Open diamonds and solid diamonds show that by FCST of 00UTC and 12UTC initial time, respectively.

そこで,客観解析値 (ANAL) を使った場合の補正結 果と,FCST を使った場合の補正結果の比較を行った. KWS-M1 測線の自動測距データで,統計期間は 2006 年 4 月~2006 年 12 月である.なお,これまでと同様,標準 偏差の小ささを気象補正の適切さの尺度とする.

Fig. 6に, 20km-ANAL (RANAL) 補正による時刻別 の斜距離標準偏差を示す(四角形).例えば,図中で00 UTC で標準偏差 5 mm を示しているのは,2006 年 4 月 ~2006 年 12 月の期間の00UTC の補正斜距離時系列の 標準偏差が 5 mm であったことを示す.他の時刻と比較 して,00 UTC (=24 UTC) 前後の標準偏差が小さいこと がわかる.なお,この期間の20km-ANAL は6時間毎に 作成されており,補正には時間的に線形内挿して使用し ている.

次に、ANALではなくFCSTを使用した補正斜距離 の標準偏差について見る.この時期のRANALを初期値 とする領域モデルによるFCSTは、1日2回、00UTCと 12UTCを初期時刻として24時間後までの1時間毎の予 報値を用いた.毎時のFCSTのGPVで補正した斜距離 の標準偏差を図中に菱形で示した.白い菱形は00UTC を初期時刻とするFCSTで補正計算された斜距離の標 準偏差を示し、黒い菱形は12UTCを初期時刻とするも のである.それらによると、初期時刻が00UTCのFCST であっても12UTCのFCSTであっても、夜間(07~19 UTC)には同様に標準偏差が大きくなる傾向であった. この傾向はANALを使用した結果でも同様であった. 測距データの標本数は昼夜で大きく異ならないので、こ の原因はGPVにあると考えられ、それは予報精度の問 題となる.予報精度の問題は小論の域を出るので詳細な 検討は行わない.ただし,全国のアメダス観測点におけ る地上気温の観測値と予報値 (FCST)を比較検証した結 果,FCST には夜間に高温のバイアスが存在するという 報告がある (平井・坂下,2006).屈折率の算出は気象要 素のうち気温の影響が最も大きいことを考えると,FCST で補正した夜間の斜距離の標準偏差が大きいことはこの 報告と調和的である.また補正に用いた RANAL は領 域モデルおよびその予報値 (FCST)を活用した 4 次元変 分法データ同化システムで作成されていたため,ANAL による補正結果でも同様の結果であったと推定される.

また,初期時刻が 00 UTC の FCST であっても 12 UTC の FCST であっても, 12~24 UTC の補正斜距離の標準 偏差は, ANAL と同程度かそれ以下である.

ところで、予報時刻が遅い FCST ほど現実大気と乖離 していくと考えられるために、これを使って補正した斜 距離の標準偏差も大きくなると予想していた.しかし、 FCST を使用した補正斜距離に対する予報誤差の影響は 見えにくかった.これは GPV の昼夜バイアスに埋もれ てしまっているという事実もあるものの、現状では ANAL を使用しなくても FCST で充分に補正が可能で あることを示している.

なお,2009年8月現在,空間分解能が高くなった5 km-ANAL についても同様の検証をする必要がある.

7. 浅間山への適用と活動評価

7-1 浅間山山頂部の斜距離変化

浅間山の手動測距データに 5 km-ANAL を使用して補 正した全ての測線の斜距離の時間変化を Fig. 7 に示す. 浅間山の火山活動が高まった後の 2008 年 9 月から,小 噴火(2009 年 2 月 2 日)が発生する前の 2009 年 1 月ま での 5 か月に,全ての斜距離は明瞭に短縮した.つまり 山頂部が膨張する傾向を示した.その量は 6~28 mm で 山頂に近い点ほど大きく,火口縁にある M5 の変化量が 最も大きい.この短縮量は,この期間の斜距離変化を直 線で近似して求めた変化速度から算出した.2009 年 2 月 以降は,M5 では伸びに反転した傾向が見えるが,それ 以外は停滞している.なお,M3 は反射点の破損により 2008 年 4 月の測定を最後に欠測が継続している.今活動 期間と 2004 年の活動期を通して観測された反射点は M 1 と M2 のみであるが,この 2 点で変化量を比較すると, 今期間の変化量は 2004 年活動時の半分程度であった.

また,前回の噴火活動(2004年9月~12月)が終了した直後から,ごく小規模な噴火が間欠的に発生した今回の活動期(2008年8月~2009年5月)に入るまでの時期を活動静穏期とし,その期間の斜距離変化を見ると,い

Fig. 7. Temporal change of slope distance corrected with 5 km-ANAL and distribution of reflectors on and around the summit.

ずれの測線の斜距離もわずかであるが伸張していること がわかった. つまり山頂部が収縮した傾向を意味する. この静穏期の観測期間は反射点により異なるため, 斜距 離変化の絶対量で示すことができない. そこで各斜距離 を直線で近似し, 1 年あたりの変化量に換算すると+1.5~ +7.7 mm/year であった. また, 活動期と同様山頂火口 に近い M5 の変化量が最も大きかった. 静穏期の山頂部 収縮の経年変化は, 従来手法の補正結果からは検出でき ず, また 20 km-ANAL の補正でも M5 以外は検出でき ていなかった. このことは 5 km-ANAL による補正が気 象ノイズを軽減したことによる.

7-2 浅間山山頂部の圧力源

2004 年噴火活動期の斜距離変化量は,2008~2009 年 活動期よりも大きかった.この時期は M1, M2, M3 の 3 点の反射点のみの観測であり,推定誤差も大きいと思わ れるが,測定値を最もよく説明できる圧力源は火口直下

の標高 2200 m であった(高木・他, 2005). 2008~2009 年活動期の変動も極めて局所的であり、その圧力源は山 体の極めて浅い場所であろうと推測された. そこで, 斜 距離変化を説明できる圧力源を, 茂木モデル (Mogi, 1958)を仮定して推定した.火口直下に圧力源の位置を 固定し,斜距離の観測値と圧力源からの計算値の残差自 乗和が最小となる場所と体積変化量を, 深さ方向に 10m 間隔,体積量 100 m³間隔で探索した. Fig. 8b に圧力源の 最適値,及び斜距離変化量の観測値と計算値を示す.斜 距離変化量の矢印は、変位ベクトルを器械点方向に投影 した成分である.標高2380m(山頂直下約200m)の圧 力源で15,300 m3の体積増加量があれば観測値を最もよ く説明することができた.この深さはほぼ火口底と同程 度の極めて浅部である. 同様に静穏期のうち5つの反射 点で同時に観測がされた 2005 年 9 月~2008 年 4 月の斜 距離の伸びから圧力源を求めたところ、活動期で求まっ

Fig. 8. Distribution of changes of slope distances corrected by 5km-ANAL and estimated pressure source beneath the summit crater. Arrows show changes of slope distance projected toward to KWS. White arrows show changes measured by EDM and black arrows show changes calculated from the estimated pressure source. a: Quiet period, Sep., 2005-Apr., 2008. b: Active period, Sep., 2008-Jan., 2009. Both pressure sources (open and solid circles) are at same depth right beneath the crater.

た場所とほぼ同じ深さ(標高 2360 m)で 12,500 m³の体 積減少があれば説明できた (Fig. 8a). つまり浅間山火口 直下の膨張期と収縮期の圧力源は極めて浅部の同じ場所 である可能性が高い.

ところで、これまで浅間山では活動期にはマグマ起源 と考えられる膨張が GPS で捉えられており、その圧力 源は山体北西側 5 km 付近の海抜下数 km に推定されて いる(村上,2005)が、この場所では静穏期には収縮が 観測されている.このように、今回明らかにされた浅間 山山頂部の局所的な山体変動は、このやや深部の圧力源 の活動とも強い時間相関がある.浅間山が噴火に至る過 程を明らかにするためには、深部のマグマ活動と、マグ マ起源とは考えにくい極めて浅部の山体変動を結びつけ るメカニズムを解明しなければならない.しかし、この 間をつなぐ場所を圧力源とする地殻変動は観測されてい ない.

8. ま と め

気象庁の数値気象データである客観解析 (ANAL)の

格子点データ(GPV)を用いて,光波測距データを補正 する手法を開発した.とくにメソモデルの客観解析値 (MANAL)を用いて,伝搬速度の補正及び伝搬経路の補 正を行うことで,大気補正が不完全であった場合に生じ る斜距離のばらつきである光波測距の長期的な気象ノイ ズはほぼ除去できた.

2003 年以降に浅間山で測定した測距データについて本 補正手法を適用したところ,噴火を伴うような活動期に は山頂部は膨張し,静穏期には収縮することがわかった.

謝 辞

浅間山の光波測距観測においては軽井沢測候所並びに 浅間山火山防災連絡事務所の職員による全面的な協力を 得て行われた.上田義浩氏,前川和宏氏,松村智之氏に はとりわけ火山活動活発時には精力的に観測に協力を頂 いた.反射点の設営では,藤原健治氏,坂井孝行氏の協 力を得た.環境省万座自然保護官事務所及び林野庁東信 森林管理署には,観測点設営においてご配慮頂いた.

また、山里 平研究室長には研究の過程において様々

な助言を頂いた.予報研究部の加藤輝之氏には,数値気 象データの取り扱いについて懇切丁寧にご指導頂いた. 2名の匿名の査読者の助言によって,本論文の内容は改 善されました.ここに記してみなさまへ感謝の意を表し ます.

引用文献

- Barrell, H. and Sears, J.E. (1939) The refraction and dispersion of air for the visible spectrum. *Phil. Trans. Roy. Soc. London, A*, 238, 1–64.
- Ciddor, P.E. (1996) Refractive index of air: new equations for the visible and near infrared. *Appl. Opt.*, **35**, 1566– 1573.
- Fujii, Y. and Miyamoto, H. (1987) A general formula for atmospheric correction in electro-optical distance measurement. J. Geod. Soc. Japan, 33, 205–214.
- Hill, R.J., Clifford, S.F. and Lawrence, R.S. (1980) Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations. J. Opt. Soc. Am., 70, 1192–1205.
- 平井雅之・坂下卓也 (2006) 地上気温・風速の検証. 平 成 18 年度数値予報研修テキスト,気象庁予報部,23-27.
- 本田有機・澤田 謙 (2009) 非静力学メソ4次元変分法 の現業化.平成21年度数値予報研修テキスト,気象庁 予報部,65-71.

- 石川宜広・小泉 耕 (2002) メソ4次元変分法.数値予 報課報告・別冊, 48, 37-59.
- 木股文昭 (1986) 日の入り前後における接地境界層内の 温度差分布.測地学会誌, 32, 224-225.
- 木股文昭・山内常生 (1981) 光波測距における温度補正. 測地学会誌, 27, 173-182.
- Mogi, K. (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull. Earthq. Res. Inst., 36, 99–134.
- 村上 亮 (2005) GPS 連続観測結果が示唆する浅間火山 のマグマ供給系.火山, 50, 347-361.
- 斎藤英二・須藤 茂・渡辺和明 (2003) 九重硫黄山, 1995 年噴火後の山体変動.火山,48,275-282.
- 須田教明 (1970) 光波測距儀による距離測定における気 象補正法に対する考察、測地学会誌, 16, 137-147.

須田教明 (1994) 電磁波測距儀 改訂版. 森北出版, 242 p.

田島 稔・佐藤 裕・須田教明 (1970) 光波距離測定の 気象補正 (I) 一係留ゾンデによる低層気温観測一. 測 地学会誌, 15, 121-129.

- 高木朗充・福井敬一・藤原健治・上田義浩・飯島 聖・ 山本哲也・坂井孝行・菅野智之・潟山弘明 (2005) 地 殻変動から推定される 2004 年浅間山噴火前後の浅部 マグマ供給系.火山, 50, 363-375.
- Tetens, O. (1930) Über einige meterologische begriffe. Zeitschrift für Geophysik, 6, 297-309.

(編集担当 古屋正人)