愛媛県野村町北部の中期更新世平野火山灰の FT 年代および岩石学的研究

榊原正幸*・中村千怜*・岩崎仁美・池田倫冶**
 佐野 栄***・檀原 徹****

(2009年3月4日受付, 2009年10月13日受理)

Petrologic Study and Fission-track Age of Middle Pleistocene Hirano Volcanic Ash in Northern Nomura Town, Southwestern Shikoku, Japan

Masayuki SAKAKIBARA^{*}, Chisato NAKAMURA^{*}, Hitomi Iwasaki, Michiharu Ikeda^{**}, Sakae Sano^{***} and Tohru Danhara^{****}

The Hirano volcanic ash in Nomura Town, southwestern Shikoku, Japan, has been characterized by petrography, refractive index and geochemical composition of volcanic glass (major and trace elements), and fission-track age of zircon. The Hirano volcanic ash has abundant vesicular glass shards and phenocrysts of biotite, hornblende and orthopyroxene. The volcanic glass has a rhyolitic composition. LREE (Light Rare Earth Element) profiles of the volcanic glass are steep with La/Sm_N=5.0–5.3 and those of HREE (Heavy Rare Earth Element) are flat with Gd/Yb_N=1.2–1.3. They have a weakly developed Eu anomaly. The Hirano volcanic ash has similar values of some incompatible trace element ratios, such as La/Y, Ba/La and Nb/Zr, with the Yufugawa pyroclastic flow deposit in the Ooita Prefecture. The fission-track age of 0.46 \pm 0.09 Ma (1 σ) was obtained for zircons from the Hirano volcanic ash. The Hirano volcanic ash can be correlated to the Yufugawa pyroclastic flow deposit based on petrographical, geochemical and geochronological data.

Key words: Hirano volcanic ash, Middle Pleistocene, Yufugawa pyroclastic flow deposit, Nomura Town, south-western Shikoku

1. はじめに

四国地域は、第四紀広域テフラの給源地域である九州 に隣接していることから、それらの火山活動史を解明す る上で極めて重要なフィールドである. 従来から、四国 の沖積平野下や段丘堆積物から多くのテフラが発見され、 その多くは、AT テフラや阿蘇4 テフラなどの後期更新 世テフラに対比されてきた(たとえば、鹿島・他、1982、 など).

しかしながら、近年、EPMA などの分析機器の普及お

*	愛媛大学大学院理工学研究科 数理物質科学専攻 地
	球進化学講座
	Department of Earth Sciences, Graduate School of
	Science and Engineering, Ehime University, Matsuyama
	790-8577, Japan.
**	(株)四国総合研究所

Shikoku Research Institute Inc., Takamatsu 761-0192, Japan.

*** 愛媛大学教育学部地学

よび各地のテフラの岩石記載・年代データの蓄積によっ て、それらの多くは再検討され、中期更新世の広域テフ ラに再対比されている(たとえば、熊原、2002;水野、 2001;水野・吉川、1991).たとえば、水野・吉川(1991) は、鹿島・他(1982)によって"阿蘇4テフラ"に対比さ れた野村町大田の高位段丘堆積物中に狭在されるテフラ 層を岩石学的に検討し、上位のテフラ層を長野県を給源 とする Ng-1 テフラに、下位のテフラ層を加久藤テフラ に対比した.また、内子町「菖³蕭の段丘堆積物中のテフラ

Department of Geology, Faculty of Education, Ehime University, Matsuyama 790-8577, Japan. **** (株)京都フィッション・トラック

Kyoto Fission-Track Co. Ltd., 44-4 Omiyaminamitajiri-cho, Kita-ku, Kyoto 603-8832, Japan.

Corresponding author: Masayuki Sakakibara e-mail: sakakiba@sci.ehime-u.ac.jp

Fig. 1. Map showing the study area. (a) locality of the study area; (b) topographical map around the outcrop. Original map is a part of 1: 25,000 topographic map of "Nomura" published by Geographical Survey Institute of Japan.

層は FT 年代が 0.60±0.13 Ma で(鹿島, 1996), 警願寺 樹テフラに対比されている(水野, 2001). 最近, 川村・ 篠原(2008)は西予市宇和盆地宇和層および中位段丘堆 積物から多数の火山灰層を記載し, 既知の広域テフラと 対比を試みた. その結果,更新世前期(130万年前)以 降, 14 層の火山灰が広域テフラに対比可能であることを 示した. これらの新たに対比された中期更新世の広域テ フラの存在は,従来の四国の山間部における堆積盆地お よび段丘の発達史や四国山地形成史モデル(たとえば, 大森, 1990)に対して大きな変更を求めている.

さて、九州を給源とする中期更新世テフラのうち、由 布川テフラ、樋脇テフラ、誓願寺栂テフラや小林-笠森 テフラは約 50~60 万年前のほぼ同時期に噴出している. 最近、これらは四国南西部の段丘堆積物や宇和盆地の ボーリングコアなどから見出されている(川村・篠原、 2008;熊原、2002).これらのテフラは、四国西部地域の 沖積平野および盆地形成史や四国山地の隆起過程を検討 する上で、極めて重要な鍵層である.

今回,著者らは,愛媛県野村盆地周辺の地質調査を行い,愛媛県西予市野村町の平野に分布する第四系から厚 層の火山灰層および火山灰質堆積物を見出した(Fig.1; 岩崎・榊原,2001,2002).本論文では,この火山灰層お よび同質の火山灰質堆積物を「平野火山灰」と命名し, その詳細な記載岩石学的検討,火山ガラスの屈折率測 定,火山ガラスの主要・微量元素分析,斑晶鉱物の化学 組成分析およびFT年代測定を行った.その際に,比較 のため,同火山灰と年代および既存の記載岩石学的特徴 が極めてよく類似する大分県庄内町の由布川火砕流堆積 物の火山ガラスの主要・微量元素分析を行った.分析用 試料は、大分県狭間町由布川渓谷の猿渡橋下の露頭(竹村・檀原,1993)における2層準(No.1:河床から1m, No.2:河床から5m)から各1試料を採取した.これらの結果に基づき,同火山灰層と九州を給源とする広域テ フラとの対比を試みた.

また,火山ガラスの微量元素分析では,テフラごとの 微量元素組成の重要性を示すため,四国地域の代表的な 第四紀テフラである K-Ah テフラ(愛媛県松山市富久町 B-1 ボーリングコア試料の 10.6-10.7 m)および AT テフ ラ(大阪市住吉区の常盤層中の平安神宮火山灰層)の データも示した.さらに,テフラ同定に関して,ICP-MS による火山ガラスの微量元素組成の有効性についても検 討した.

2. 露頭の記載

本論文で検討する火山灰層および火山灰質堆積物は, 愛媛県野村町平野を流れる肱川の支流・富野川の左岸側 に位置する大露頭から見出された.露頭は畑に隣接する 尾根を人工的に切り取ることによって作られており,そ の大きさは幅約 35 m,高さ約 15 m である (Fig. 1).

この露頭では、北側に露出する基盤岩を不整合で覆う ほぼ水平なシルト・砂・礫層、砂質火山灰層および火山 灰質砂・シルト層などが観察できる(Fig. 2).以下、各 地層の層相および特徴を簡潔にまとめる.

2-1 基盤岩

基盤岩は塊状細粒砂岩で,露頭の北側にのみ露出している.この砂岩は塊状無層理の中粒ないし細粒砂岩で,かなり風化している.この基盤岩は,桃井・他(1991)および山北(1998)によると,いわゆる黒瀬川帯に帰属

Fig. 2. Columnar section with modal compositions of phenocrysts and volcanic glass in the Hirano outcrop.

すると考えられる.

2-2 層相記載

本露頭において観察される第四系は礫層もしくは礫混 じり堆積物を主とし、基盤岩をアバット不整合で覆って いる.その層厚は約14mで、下位から角礫層(層厚4m 以上)、砂・シルト混じり礫層(層厚1.2~1.5m)、礫混じ り火山灰質シルト・泥層(層厚0.4~0.5m)、砂質火山灰 層(層厚1.3~2.7m)、礫混じり火山灰質砂層(層厚1.2~ 2m)、礫混じり火山灰質砂・シルト層(層厚0.2~0.6 m)、礫混じり砂・シルト層(層厚1.9~2.2m)、礫混じり 火山灰質砂・シルト層(層厚1.9~2.2m)、礫混じり 火山灰質砂・シルト層(層厚1.9~2.2m)、礫混じり や・シルト層(層厚1.0~2.2m)、礫混じり や・シルト層(層厚1.0~2.2m)、礫混じり 地ト層(層厚1m以上)の順に累重する(Fig. 2)、各 地層間では、明瞭な下底侵食は認められない、これらの 堆積相は全体に淘汰の悪い礫を含んでおり、河川性堆積 物の特徴を示す。

下位の角礫層および砂・シルト混じり礫層に含まれる 礫は、淘汰が悪く、礫径は最大5cm程度で、亜角礫もし くは角礫である.礫種は、主として砂岩および泥質千枚 岩である.一方、角礫層より上位の地層に含まれる礫は、 礫径が最大 10 cm で, 礫種は主として砂岩およびチャー トである.

砂質火山灰層は上方細粒化やラミナ構造を示す.この ことはこの火山灰層が河川の水流によって再堆積したこ とを示唆している.この層の黒雲母および普通角閃石に 富む部分では,粗粒な黒雲母(最大粒径2mm)が普遍的 に見出され,普通角閃石や黒雲母の濃集による明瞭なラ ミナ構造が観察できる.

3. 分析方法

調査した露頭から砂・シルト混じり礫層 (H-1), 礫混 じり火山灰質砂・シルト層 (H-2, H-3 および H-10), 砂 質火山灰層 (H-4~H-6), 礫混じり火山灰質砂層 (H-7~ H-9), および礫混じり砂・シルト層 (H-11 および H-12) の 12 試料を採取して,構成鉱物の量比,火山ガラスの形 状,火山ガラスの屈折率,主要元素組成ならびに微量元 素組成,斑晶鉱物の化学組成を検討した (Fig. 2). これ ら分析の手順は以下の通りである.

3-1 前処理

採取した 12 試料の火山灰および火山灰質堆積物は, 水洗, 超音波洗浄および乾燥の後, 篩い分けした.本研 究では,4種類の粒径(1/16~1/8,1/8~1/4,1/4~1/2, 1/2~1mm 径)の粒子において鉱物組み合わせおよび量 比を検討した.その結果,火山灰および火山灰質堆積物 に関してすべての鉱物組み合わせの量比が観察できる 1/4~1/2mm 径の粒子試料を記載岩石学的検討および 化学分析に用いた.ただし,火山ガラスの形状および屈 折率測定では,1/16~1/8mm 径の粒子を用いた.

3-2 テフラの記載岩石学的検討

前処理した 1/4~1/2 mm 径の粒子を対象に,四分法 を繰り返して約 2000 粒子を分け取り,火山ガラスおよ びその形状,斑晶鉱物,岩片などを同定した.火山ガラ スの形状は吉川 (1976) に準拠して,H:扁平型,C:中間 型および T:多孔質型に分類した.また,これらの形態 に属さないものを It: 不規則型として示した.さらに火 山ガラスの水和現象を観察し,山下・檀原 (1995) に基 づき,水和やスーパーハイドレーションの程度について も可能な限り半定量的に記載した.

3-3 ガラスの屈折率測定

火山ガラスの屈折率は,前処理によって調整された 1/ 8~1/16 mm 粒径試料を対象に,(株)京都フィッション・ トラック所有の温度変化型屈折測率測定装置(RIMS2000) を用いて測定した.本研究では,採取した試料のうち, H-5 に含まれる火山ガラスの屈折率を 40 個測定した.

3-4 EDS による主要元素分析

本研究では、火山灰および火山灰質堆積物中の火山ガ

ラスおよび斑晶鉱物の主要元素分析を EDS によって行った.以下,その試料調整および分析方法について述べる.

(1) 火山ガラス分析試料の作成手順

火山ガラスは非晶質であるため風化に対して脆弱である。そのため、地層中の火山ガラスは、地下水や降水によって変質する可能性が大きい(荒牧・原村,1966;
Fisher and Schmincke, 1984; 喜夛・他、1999; 岩崎・榊原、2004)。例えば、風化作用によって、火山ガラス中のK₂O および Na₂O が周縁部や割れ目に沿って溶脱しやすい(岩崎・榊原,2004)。

従来, EDS 分析用火山ガラス薄片の作成方法は,スラ イドガラス上に火山ガラス片を載せ,不定方位でエポキ シ樹脂で封入するという簡単な方法で行ってきた(たと えば,黒川,1999;奥村,1991;奥村,1993).しかしなが ら,これらの方法では,樹脂に埋め込んだガラス片の傾 きによっては,変質部も含めて分析してしまうため,分 析値が分散する可能性がある.また,X線発生領域の深 さや水平方向への広がりのため,ガラス試料の薄い部分 を測定すると,測定値にばらつきが生じる場合も考えら れる.

そこで、本研究では、火山ガラスの未風化部に最も近 いデータを出すために、分析用火山ガラス試料を岩崎・ 榊原 (2004) および中村・榊原 (2006) の方法に従って作 成した.以下、本研究における実体鏡下でのガラス片の 薄片試料作成方法を示す.

① あらかじめ,長軸径をそろえた火山ガラスを用意する.
② 0.25 mm 以上の火山ガラスは、スライドガラスで作成した自作の試料台上の凹部に長軸をほぼ垂直に立てて定置する(岩崎・榊原,2004). 0.25 mm 以下のものは透過電子顕微鏡用の銅製シートメッシュで作成した試料ホルダーを使用する(中村・榊原,2006).

③ 試料台上でエポキシ樹脂によって火山ガラス片を封 入する.

④ エポキシ樹脂で硬化後, ノギスを用いて火山ガラス片 の長軸径がほぼ 1/2 になるまで 1 µm および 0.25 µm の ダイヤモンドスラリーで試料を研磨する.

⑤ カーボン蒸着する.

(2) EDS による分析条件および方法

テフラ中の火山ガラスおよび斑晶鉱物の定量分析は, 愛媛大学理学部地球科学科に設置している走査電子顕微 鏡 (JEOL JSM - 5400) に Oxford 社製 X 線検出器を装着 した EDS を使用した.火山ガラスを分析する場合,測定 条件は加速電圧 10 kv,電流値 4.00×10⁻¹⁰ A,測定時間 200 秒で,各鉱物の場合,加速電圧 15 kv,電流値 4.00× 10⁻¹⁰ A,測定時間 100 秒である.ビームは,火山ガラス および斜長石では 4×4 µm の正方形に拡張し,他の鉱物 Table 1. Analytical results of obsidian (Astimex Scientific Ltd.) and NIST 620 as standard glass samples by EDS. SD: standard deviation, RSD: relative standard deviation.

		NISTglas	s 620	Obsidian					
	certified	this study	SD	RSD	certified	this study	CD	RSD	
(wt.%)	values	(n=5)	30	(%)	values	(n=5)	30	(%)	
SiO ₂	72.41	72.51	0.34	0.5	74.79	74.62	0.22	0.3	
TiO ₂	0.02	0.09	0.09	96.9	0.10	0.11	0.06	54.1	
Al_2O_3	1.81	1.65	0.08	5.1	13.26	13.21	0.22	1.7	
FeO	0.04	0.07	0.08	114.8	1.74	1.71	0.14	8.1	
MnO					0.06	0.22	0.10	43.8	
MgO	3.71	3.72	0.12	3.2	0.07	0.08	0.05	61.2	
CaO	7.14	7.29	0.13	1.7	0.77	0.79	0.10	12.9	
Na ₂ O	14.46	14.28	0.23	1.6	4.11	4.13	0.15	3.6	
K ₂ O	0.41	0.39	0.04	11.1	5.10	5.12	0.03	0.7	
total	100.00	100.00			100.00	100.00			

では1µmに絞って分析した. また,火山ガラスの分析 では,風化による影響などを避けるため,火山ガラスの 研磨面の中央部付近を分析した.

火山ガラスは各粒子ごとに5点分析し、その平均値を 求め、分析値とした.測定対象元素はSi, Ti, Al, Fe, Mn, Mg, Ca, Na およびKの9元素である.火山ガラ スの分析に際しては.標準試料として、黒曜石 (Astimex Scientific Limited 社製) および合成ガラス (NIST 620)を 用いて,正確度および再現性をチェックした (Table 1). また、以下の測定結果では、特に断らない限り、火山ガ ラスの分析値をトータル 100 wt.%として計算した値を 用いた.

斑晶鉱物の分析に関しては, Sakakibara and Isono (1996)に従った.

3-5 ICP-MSによる火山ガラスの微量元素分析

火山ガラスの微量元素分析は、ICP-MS 装置(パーキ ンエルマー ELAN6000)を用いて溶液法で行った.分 析試料は,洗浄・篩い分けしたテフラから包有鉱物を含 まない火山ガラスを,実体顕微鏡下でハンドピックに よって選別した後,さらに偏光顕微鏡下でチェックし, 完全に純化した.分析には,この純化した火山ガラス試 料をメノウ乳鉢で微粉末化したもの約 100 mg を使用し た.火山ガラスは,HNO₃および HF の混酸を用いて,密 閉式のテフロン容器で加熱分解・乾固し,最終的に 3% HNO₃ で希釈した溶液を分析用試料とした.

測定元素は、火山ガラスの微量元素濃度のデータベー スを充実させる意味から、30種(La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th, U) について濃度分析を行った.

機器のドリフト補正に Rh, In, Re および Bi 内標準液 を使用し,外部検量線法により元素濃度を求めた.検量 線の作成は、Eggins et al. (1997)の方法に従い、米国地 質調査所発行の岩石標準試料 BHVO-2 を用いて行った. 分析手順の信頼性を確認するために、岩石標準試料 BIR-1 および AGV-1 をモニターとして繰り返し分析し た. その結果を Table 2 に示す.対象とするすべての元 素において推奨値および Eggins et al. (1997)の値と非常 によい一致を示すことが確認された.なお、対象とした 微量元素の分析誤差は概ね 3%以内であった.

本研究では、平野火山灰および由布川火砕流堆積物の 火山ガラスを各2試料, K-AhテフラおよびATテフラ のそれを各1試料分析した.

4. 分析結果

4-1 テフラの記載岩石学的検討

採取した堆積物 12 試料(H-1~H-12)を記載岩石学的 に検討した.ただし、岩片に関しては、チャートなどの 明瞭な基盤岩由来のものを除くと、起源不明のものが多 数含まれていた.したがって、Fig. 2 では、テフラ起源の 斑晶鉱物・火山ガラスの量比のみを示す.

火山ガラスの含有量は砂質火山灰層で著しく高く,H-5 でピークが認められ,上下位に向かって急激に減少する傾向を示す(Fig. 2).すなわち,最下位のH-1 ではほとんど含まれていないのに対し,H-2 および 3 では個数比で 5~20%程度,H-4 では約 45%,H-5 で約 70%に達する.この上位のH-6 からH-9 では,火山ガラスの含有量は急激に減少し,H-10 より上位ではまったく含まれない(Fig. 2).

砂質火山灰層(H-4,5 および 6), 礫混じり火山灰質砂 層(H-7 および 9) および火山灰質砂・シルト層(H-2, 3 および 10) に含まれる重鉱物は,斜方輝石,普通角閃 石,黒雲母,磁鉄鉱およびチタン鉄鉱で,まれに燐灰石 およびジルコンを含む(Fig.2).火山ガラスおよび斑晶 鉱物のモード比に対して,重鉱物である普通角閃石およ び不透明鉱物は,砂質火山灰層(H-4, H-6) および火山 灰質シルト・泥層(H-10) で最も富み,モード比におい てほぼ 40%に達する.

ガラスの形態や色および斑晶鉱物の光学的特徴は,各 層準間における差異が認められない.火山灰に含まれる 脱ガラス化していないガラス片は無色透明もしくはやや 褐色を帯びており,その形状は,吉川(1976)に基づく と,C型を主とし,H型やT型も含む.単斜輝石は短柱 状で,多くは他形である.偏光顕微鏡下の色は淡緑色で ある.包有物として,斜長石,チタン鉄鉱,磁鉄鉱およ びガラスを含む.斜方輝石は短柱状半自形で,偏光顕微 鏡下で淡緑色~淡褐色を呈する.斜方輝石中の包有物 は、燐灰石,チタン鉄鉱,磁鉄鉱およびガラスである.

Table 2. Analytical results of USGS rock standard samples BIR-1 and AGV-1. RSD: relative standard deviation.

		BIR-1		AGV-1					
(ppm)	certificated value	Eggins <i>et</i> <i>al</i> . (1997)	This study (n=20)	RSD (%)	certificated value	Eggins et al. (1997)	This study (n=4)	RSD (%)	
Со	51	53	53.4	7.8	15.3	16	15.4	5.2	
Ni	166	175	182	4.0	16	16	16.0	10.6	
Zn	71	65	66.8	7.2	88	85	83.8	2.5	
Ga	16	15.2	13.9	4.0	20	20.3	42.9	3.4	
Rb	0.24	0.195	0.190	38.0	68	68.3	66.0	12.2	
Sr	110	106.4	105	18.6	660	655	644	4.7	
Y	16.5	16.2	16.9	10.1	20	21	19.6	7.6	
Zr	14.5	14.47	14.9	16.4	225	240	240	0.9	
Nb	0.55	0.558	0.581	5.3	14.5	14.91	14.8	2.7	
Cs	0.005	0.0053	0.00538	42.7	1.25	1.305	1.55	4.3	
Ba	6.4	6.52	6.31	9.7	1200	1223	1351	9.5	
La	0.58	0.604	0.609	6.6	39	38.5	36.4	6.9	
Ce	1.85	1.897	1.96	4.2	70	68.5	65.4	7.6	
Pr	0.37	0.378	0.386	4.9	8	8.45	8.20	6.1	
Nd	2.35	2.38	2.43	4.6	32	31.6	30.8	5.2	
Sm	1.1	1.117	1.12	5.6	5.9	5.82	5.98	4.3	
Eu	0.52	0.524	0.523	5.6	1.55	1.565	1.67	3.3	
Gd	1.97	1.85	1.68	6.7	4.7	4.73	5.31	4.5	
Tb	0.38	0.379	0.354	5.6	0.7	0.664	0.675	4.2	
Dy	2.5	2.53	2.57	6.5	3.8	3.54	3.48	3.6	
Ho	0.57	0.585	0.588	7.1	0.7	0.69	0.674	4.5	
Er	1.7	1.734	1.70	7.9	1.9	1.856	1.87	4.4	
Tm			0.252	8.4			0.257	3.1	
Yb	1.6	1.649	1.62	8.9	1.75	1.644	1.62	4.2	
Lu	0.25	0.247	0.247	10.1	0.27	0.248	0.244	5.3	
Hf	0.56	0.562	0.586	4.0	5.17	5	5.09	1.7	
Та	0.06	0.041	0.0480	10.2	0.9	0.882	0.885	1.5	
Pb	3	2.97	3.79	10.5	37	37.27	44.2	24.9	
Th	0.03	0.0302	0.0315	13.9	6.5	6.53	6.11	7.9	
U	0.01	0.01	0.0103	12.6	1.9	1.885	1.78	9.4	

普通角閃石は半自形~自形柱状で,色は濃緑色~緑色を 呈する.包有物として,斜長石,チタン鉄鉱およびガラ スを含む.黒雲母は六角板状自形であるが,すべて変質 している.磁鉄鉱は自形正八面体で,イルメナイトは自 形六角卓状である.石英は自形そろばん玉状で,斜長石 は多くが半自形粒状~卓状である.

4-2 火山ガラスの屈折率

火山ガラスの屈折率は砂質火山灰層の H-5 試料において測定した. その範囲は, n=1.4962-1.5021 で, 平均値が 1.4988, 最頻値が 1.498-1.499 である (Fig. 3).

4-3 火山ガラスの化学組成

(1) 主要元素

EDSによる砂質火山灰層(H-4,5および6)および同 質の火山灰質砂層(H-7および9)中の火山ガラスの代 表的な主要元素濃度分析値をTable 3に示す.また,火 山ガラスのハーカー図をFig.4に示した.それらの火山 ガラスは、SiO₂=77.1~78.6 wt.%,TiO₂=0.1~0.5 wt.%, Al₂O₃=12.6~13.3 wt.%,FeO=0.8~1.2 wt.%,MgO= 0.1~0.3 wt.%,CaO=0.8~1.1 wt.%,Na₂O=2.5~3.8 wt. %,K₂O=3.6~4.0 wt.% であり、試料間および分析粒子 間の組成範囲は狭い(Table 3).ハーカー図においても、 各試料のデータは狭い領域にプロットされる.FeO-SiO₂ 間では、弱い負の相関が認められるが、他の酸化物と SiO₂の間には明瞭な相関や試料間の相違は認められな

Fig. 3. Histgrams of refractive index of volcanic glass from the Hirano volcanic ash. Yfg data are from Machida and Arai (2003). Yfg: Yufugawa pyroclastic flow deposit.

Table 3. Major element composition of volcanic glasses from the Hirano volcanic ash and Yufugawa pyroclastic flow deposit. SD: standard deviation.

		Hirano volcanic ash									
		H-4		H-5		H-6		H-7		H-9	
(wt.%)		mean (n=5)	SD	mean (n=5)	SD	mean (n=5)	SD	mean (n=5)	SD	mean (n=5)	SD
	SiO ₂	77.06	0.25	78.01	0.45	77.22	0.60	77.23	0.44	77.94	0.24
	TiO ₂	0.35	0.05	0.12	0.08	0.24	0.13	0.31	0.07	0.11	0.05
	Al ₂ O ₃	13.15	0.08	12.92	0.12	13.11	0.23	12.96	0.13	13.05	0.13
	FeO	0.78	0.30	0.87	0.14	0.82	0.28	0.95	0.12	1.02	0.21
	MnO	0.12	0.17	0.07	0.20	0.16	0.09	0.22	0.07	0.04	0.14
	MgO	0.30	0.06	0.16	0.04	0.14	0.07	0.21	0.03	0.22	0.03
	CaO	0.84	0.14	0.98	0.05	0.95	0.08	1.09	0.10	1.01	0.07
	Na ₂ O	3.80	0.34	3.03	0.08	3.66	0.38	3.03	0.17	2.86	0.22
	K_2O	3.59	0.15	3.84	0.13	3.71	0.05	4.00	0.15	3.75	0.09
	Total	100.00		100.00		100.00		100.00		100.00	
RAW	Total	92.96		88.79		92.62		88.94		90.67	

	Yufugawa p	Yufugawa pyroclastic flow deposit (No.1)										
	1		2		3		4		5			
(wt.%)	mean (n=5)	SD	mean (n=5)	SD 1	mean (n=5)	SD 1	nean (n=5)	SD 1	nean (n=5)	SD		
SiO	76.91	0.26	76.90	0.34	77.49	0.61	76.72	0.31	77.10	0.73		
TiO	0.19	0.21	0.25	0.22	0.25	0.19	0.18	0.12	0.23	0.18		
Al ₂ O ₃	13.14	0.15	13.05	0.13	13.16	0.16	13.11	0.10	13.13	0.14		
FeC	0.43	0.39	0.66	0.29	0.36	0.40	0.81	0.43	0.11	0.10		
MnC	0.34	0.34	0.14	0.16	0.01	0.02	0.16	0.16	0.28	0.39		
MgC	0.18	0.12	0.18	0.11	0.15	0.07	0.21	0.13	0.06	0.07		
CaC	1.01	0.08	0.92	0.19	0.85	0.14	1.07	0.40	1.03	0.14		
Na ₂ C	3.86	0.12	3.91	0.08	3.72	0.45	3.72	0.18	3.85	0.46		
K ₂ C	3.95	0.14	3.99	0.14	4.00	0.11	4.03	0.20	4.22	0.22		
Tota	100.00		100.00		100.00		100.00		100.00			
RAW Tota	95.54		95.63		94.81		95.14		94.82			

Fig. 4. Harker diagrams of the volcanic glass shards from the Hirano volcanic ash.

い (Fig. 4).

(2) 微量および希土類元素

平野火山灰中の火山ガラスの希土類元素 (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) お よびそれ以外の微量元素 (Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th, U)の定量分析結果 を Table 4 に示す. また,比較ならびに参考値として,前 述の K-Ah テフラ, AT テフラおよび由布川火砕流堆積 物の火山ガラスも分析した.

N-MORB (Hart et al., 1999) で規格化した平野火山ガ ラスの微量元素濃度パターンを Fig. 5 に示す.また,比較 のため, K-Ah テフラ, AT テフラおよび由布川火砕流の データも示す. これらの火山ガラスは,相対的に非常に 高い LIL 元素濃度と低い HFS 元素濃度によって特徴づけ られ, 典型的な島弧型のパターン (Pearce and Parkinson, 1993) を示す.

平野火山灰の微量元素濃度パターンは、由布川火砕流 堆積物のそれ非常によく似ており、K-Ah テフラや AT テフラと比較して相対的に高い Cs~Th 濃度と低い Zr~ Lu 濃度を示す (Fig. 5).

Fig. 6 にコンドライトで規格化した火山ガラスの希土 類元素パターンを示す. 平野火山灰中の火山ガラスの希 土類元素パターンは、サンプル間のばらつきが小さく、 よく収束している. それらの軽希土類元素は右下がりの パターンを示し (La/Sm_N=5.0-5.3), 重希土類元素はコ ンドライトの 9~16 倍程度でほぼフラットなパターンを 示す (Gd/Yb_N=1.2-1.3). また、Eu の負異常も認められ る. この特徴は由布川火砕流のそれと良く一致する. 一

Table 4. Trace element composition of volcanic glasses from the Hirano volcanic ash and others. K-Ah: Kikai-Akahoya tephra, AT: Aira-Tanzawa tephra, Yfg p.f.d: Yufugawa pyroclastic flow deposits.

		Yfg	p.f.d.		Hira	ano vo	lcanic asl	1	I Ab		AT	
	1		2		H-4	L.	Н-6	;	K-A	п	AI	
(ppm)	ean (n=3)	RSD (%)	ean (n=3)	RSD (%)	ean (n=3)	RSD (%)	ean (n=3)	RSD (%)	ean (n=3)	RSD (%)	ean (n=3)	RSE (%
Co	0.40	7.4	0.59	8.9	0.26	7.4	0.23	6.4	3.2	1.6	0.86	1.9
Ni	1.57	19.4	1.85	13.4	1.30	19.7	1.34	19.0	0.8	2.8	4.24	3.2
Zn	34.8	3.1	43.8	2.2	40.5	2.1	29.8	3.7	48.7	1.1	31.0	2.2
Ga	22.9	3.2	24.8	1.3	21.1	1.9	21.9	1.3	17.8	1.1	19.9	0.9
Rb	238	1.5	275	1.4	213	1.7	236	0.8	80.5	0.7	126	1.4
Sr	164	2.1	187	0.5	159	2.1	151	1.0	127	0.4	87.6	1.0
Y	13.7	2.1	17.3	0.5	14.6	2.4	16.9	0.6	37.5	0.2	23.5	0.5
Zr	113	1.6	122	1.6	103	1.8	113	0.5	213	1.0	121	0.4
Nb	14.1	0.7	15.0	1.4	12.8	1.9	13.9	0.8	6.2	1.0	7.54	0.2
Cs	27.8	0.8	32.6	0.3	23.5	1.4	26.7	1.1	3.91	0.8	8.50	0.5
Ba	788	0.4	876	0.4	755	0.3	811	0.6	428	0.3	529	0.5
La	19.2	2.1	25.1	0.8	23.2	1.7	26.6	1.6	19.1	1.4	25.2	0.8
Ce	38.5	1.9	50.2	1.1	46.7	0.7	53.1	0.0	42.8	1.2	49.1	0.8
Pr	4.45	3.5	5.63	2.5	4.99	0.8	5.67	1.6	5.32	0.8	5.27	0.3
Nd	16.2	1.3	19.9	2.4	17.7	3.1	19.8	2.3	21.7	0.8	18.4	1.4
Sm	2.80	2.0	3.33	1.0	2.98	1.7	3.33	4.0	5.08	1.4	3.62	1.5
Eu	0.67	3.4	0.814	4.9	0.663	0.4	0.719	0.9	1.11	1.4	0.62	1.6
Gd	2.66	1.3	3.19	3.9	2.75	2.7	3.14	2.8	5.26	1.5	3.63	1.7
Tb	0.39	4.0	0.48	2.2	0.39	3.1	0.43	1.2	0.88	1.8	0.56	3.4
Dy	2.25	2.7	2.62	2.7	2.22	3.1	2.37	2.3	5.56	0.3	3.44	0.6
Ho	0.45	4.3	0.57	2.4	0.48	0.8	0.54	3.0	1.23	0.8	0.76	1.9
Er	1.48	6.2	1.81	2.0	1.54	3.3	1.67	3.7	3.66	0.9	2.24	1.3
Tm	0.25	2.7	0.30	3.4	0.24	9.3	0.29	2.6	0.56	1.6	0.34	0.9
Yb	1.80	4.0	2.16	3.7	1.87	2.2	2.06	2.8	3.72	1.0	2.37	0.8
Lu	0.30	3.7	0.35	5.4	0.28	7.4	0.31	3.2	0.57	3.0	0.38	0.9
Hf	3.40	0.1	3.69	1.1	3.09	1.7	3.46	0.9	5.39	1.1	3.39	1.1
Ta	1.01	3.5	1.08	0.6	0.924	2.8	1.01	2.4	0.46	1.7	0.68	0.7
Pb	7.49	0.3	7.00	2.5	9.19	1.3	10.6	3.4	29.0	0.6	29.3	0.5
Th	10.1	0.6	12.1	1.8	10.5	1.2	12.5	1.1	7.60	0.5	11.7	0.4
U	0.74	2.3	0.75	1.4	1.18	3.5	1.11	2.2	1.97	0.4	2.51	0.8

方, K-Ah テフラと AT テフラの希土類元素パターンは, 全体的には平野火山灰中の火山ガラスと同様に,左上が りで軽希土類元素に富んでいるものの,GdからLuは 平野火山灰中の火山ガラスと比べて,明らかに高濃度で ある.また,それらは,平野火山灰の火山ガラスと比較 して,Euの負異常が顕著である.

4-4 斑晶鉱物の化学組成

斑晶鉱物は H3~H6 の各試料中のものを分析した.平 野火山灰の単斜輝石の Mg# は 0.71-0.79 で, Deer et al. (1997) の分類によると, サーライトもしくはディオプサ イドである. 斜方輝石の Mg# は 0.68-0.79 で, 斜長石, チ タン鉄鉱, 磁鉄鉱, 燐灰石およびガラスを包有する.平 野火山灰の Ca 角閃石は, Leake (1978) によると, ferroan pargasite~pargasite に分類され, 稀に edenite の領域に プロットされる. それらの Mg# は 0.67-0.74 で, 斜長石, チタン鉄鉱およびガラスを包有する. 斜長石は An₅₁ Ab₄₇ Or₂~An₂₃ Ab₇₄ Or₃ で, 層準ごとの規則的な組成変化は認 められない. チタン磁鉄鉱は, total FeO=87.3~88.2 wt. %, TiO₂=6.2~6.9 wt.%で, TiO₂ は FeO に対して負の相 関を示す.

5. FT 年代測定

試料は1層準(H-5)から採取した(Fig. 2). ジルコンの抽出は檀原(1999)に従って行った. 試料約0.5kgか

Fig. 5. Spiderdiagram showing the compositional difference of volcanic glass among the Hirano volcanic ash, Yufugawa pyroclastic flow deposit, K-Ah and AT tephras.

Fig. 6. Chondrite normalized REE patterns of volcanic glass from the Hirano volcanic ash, Yufugawa pyroclastic flow deposit, and K-Ah and AT tephras. CIchondrite value data are from Sun and Mcdonough (1989).

Table 5. Results of fission-track dating.

Sample name	No. of grains	Spontaneous		Induced		Dosimeter		D ₂ (x ²)		II	A = + 1 =
		ρ _s (cm ⁻²)	(N_s)	ρ _i (cm ⁻²)	(N_i)	ρ_{d} (×10 ⁴ cm ⁻²)	(N_d)	Pr(χ) (%)	r	(ppm)	$Age \pm 1.0$ (Ma)
H-5	30	1.84×10 ⁴	30	1.17×10 ⁶	190 1	8.378	4,290	6	-0.238	120	0.46 ± 0.09

 ρ . and N: density and total number of counted tracks, respectively; Analyses were made by the external detector method applying to external surfaces of zircon (ED2 method: Gleadow, 1981); Age was calculated using a dosimeter glass NIST-SRM612 and age calibration factor ζ ED2=352±4 (1 σ) (Danhara *et al.*, 2003); P(χ^2), probability of obtaining the χ^2 value for ν degrees of freedom (ν =number of cristals-1) (Galbraith, 1981); r: correlation coefficient between ρ_s and ρ_i ; U: uranium content (Iwano *et al.*, 2000); Zircon grains were irradiated with thermal neutrons in the pneumatic tube of the JRR-4 unit of the Japan Atomic Energy Research Institute (JAERI) reactor with NIST-SRM612 dosimeter.

ら抽出したジルコン粒子は 5000 個(本質結晶含有率は 99%)である. FT 年代測定では,結晶外部面を測定面と した外部検出器法(ED2法; Gleadow, 1981)を用いて, IUGS 勧告 (Hurford, 1990a, b) に準拠したゼータ較正 (Danhara *et al.*, 2003) を行った.測定手順は檀原 (1995) に詳細に記述されている.

ジルコン中のエッチングは KOH-NaOH 共融液を用 い,225℃の条件で 50 時間行った.熱中性子照射線量の 測定には,NIST-SRM612 ガラスに DAP ディテクター を密着させ線量計として用いた.熱中性子の照射は日本 原子力研究所の JRR4 炉気送管で行った.なお,今回の 測定試料における粒子数は 30 個とした.

測定結果は、平均自発トラック数が少なく、粒子デー タはまとまりに欠ける.しかしながら、Galbraith (1981) による粒子年代データの χ^2 検定では、 $P(\chi^2)$ が91%であ り、合格している.このことは粒子データに非ポアソン 変動がないことを意味しており、測定が適切に行われ異 種年代結晶の混入がないと判断できる.従って、測定粒 子 (30 個)が1つの年代集団に属しているとみなし、H-5 において 0.46±0.09 Ma の年代値を得た (Table 5).

6. 考 察

6-1 平野火山灰の給源

今回,検討した平野火山灰は、ラミナなどの堆積構造 が認められることや異質な岩片および結晶片を含んでい ることから,降下火山灰が再堆積することによって形成 されたものであると推定される.ただし,砂質火山灰層 は、構成破片から判断するとほぼ純層に近いと判断され る.また、上述のように、砂質火山灰層より上位の火山 灰質堆積物は、それらに含まれる斑晶鉱物組み合わせ、 火山ガラスの形状および主要元素組成が層準に関係な く、ほぼ一致することから、これらは同一火山灰に由来 すると考えられる. 平野火山灰の FT 年代 (0.46 Ma±0.09) に基づくと, その給源は,九州地域を給源とする由布川火砕流(星住 ほか,1988),樋脇テフラ(町田・新井,1992),誓願寺栂 テフラ(町田・新井,2003)および小林-笠森テフラ(町 田・新井,1992)が対比候補として挙げられる.由布川 火砕流はジルコンの FT 年代として 0.60±0.10 Ma が得 られている(竹村・檀原,1993).また,樋脇テフラにつ いては 0.57~0.58 Ma の K-Ar 年代(町田・新井,2003), 誓願寺栂テフラは 0.57±0.09 Ma の FT 年代,小林-笠森 テフラは 0.52~0.53 Ma の放射年代(白井,2000)が得ら れている.このうち,由布川火砕流は,①黒雲母,角閃 石および斜方輝石を重鉱物として多量に含む,および ② 火山ガラスの屈折率範囲は,n=1.498~1.500である (町田・新井,2003),という特徴を有し,上記のテフラの 中で平野火山灰と最も良く類似している.

平野火山灰層と噴火年代が近似する由布川火砕流、樋 脇テフラ,誓願寺栂テフラおよび小林--笠森テフラに関 して,既存の火山ガラスの主要元素データと比較検討し た (Fig. 7). 小林-笠森テフラの火山ガラス組成は, 平野 火山灰層のそれと比較して、Al₂O₃および FeO に関して 明瞭に高く、K2Oに関しては高濃度側と低濃度側に大き くずれる. 誓願寺栂テフラは, 平野火山灰層と比較して SiO₂が明瞭に高く, かつ Na₂O および K₂O 濃度が低い. 樋脇テフラは SiO2 に関するデータがないため、Fig.7 に プロットされていないが、Al₂O₃・K₂O 濃度が明瞭に低 い. 一方, 由布川火砕流の火山ガラスの主要元素組成は, 平野火山灰層のそれと比較して、SiO2にやや乏しく、か つ Na₂O および K₂O にやや富むものの,ほぼ同じ領域に プロットされる (Fig. 7). さらに, 両者の火山ガラスの 微量元素濃度および希土類元素パターンもほぼ一致する (Figs. 5, 6).

微量元素に関しては、La/Y-Ba/La 図、La/Y-Ba 図、 および Nb-Zr 図において、平野火山灰と由布川火砕流は

Hirano volcanic ash

- X Yufugawa pyroclastic flow deposits (this study)
- Kobayashi-Kasamori tephra (Satoguchi and Hattori, 2008; Machida and Arai, 2003, Urabe, 1996)

 Δ Seiganji-Toga tephra (Urabe, 1996)

Fig. 7. Comparison of major elements of volcanic glass compositions among the Hirano volcanic ash and other Middle Pleistocene tephras.

Fig. 8. La/Y-Ba/La diagrams of volcanic glass from the Hirano volcanic ash and other Middle Pleistocene tephras.

良い一致を示す(Figs. 8, 9).特に,Nb および Zr の液相 濃集元素に関して,平野火山灰層のそれは由布川火砕流 のそれと極めて良く一致する.以上の分析結果から,平 野火山灰層は九州北部の由布院周辺を給源とする由布川 テフラに対比される.

6-2 広域テフラとしての由布川火砕流

由布川火砕流堆積物は、総噴出量が北東部九州で比較

Fig. 9. Nb-Zr diagram of volcanic glasses from the Hirano volcanic ash, Yufugawa pyroclastic flow deposit, and K-Ah and AT tephras.

的大きいにもかかわらず,従来,愛媛県に分布する第四 系からそれに対比される火山灰は2例のみしか記載され ていない. 熊原 (2002) は,愛媛県愛南町のいわゆる高位 段丘堆積物中に挟在する銭坪テフラ(鹿島・満塩,1996) を由布川火砕流堆積物に対比している.また,川村・篠 原 (2008) は,愛媛県西予市の宇和盆地におけるボーリン グコア深度 57.50~57.15 m において, 層厚 35 cm の粘土 質火山灰を記載し,由布川火砕流堆積物に対比している.

上記の研究および本研究の結果に基づくと,由布川テ フラの分布は少なくとも愛媛県西部のかなり広範囲に及 び,その東縁は今後さらに広がると予想される.

6-3 火山ガラスの微量元素組成とテフラの対比

従来のテフラ研究では、テフラの記載岩石学的検討, 年代データ、火山ガラスの屈折率および火山ガラスの主 要元素組成に基づいて、対比が行われてきた.しかしな がら、周知のように、日本列島の第四紀島弧マグマの類 似性から判断すると、これらの情報データのみに基づく と類似したテフラの識別は困難であると考えられる.

本研究では、火山ガラスの ICP-MS による REE を含む 微量元素分析を行い、愛媛県西予市野村町平野に分布す る更新世中期の火山灰が、九州北部の由布川火砕流に対 比されることを明らかにした.しかしながら、現時点で、 数少ない事例を除き、広域テフラ中の火山ガラスの微量 元素分析はほとんど行われておらず、対比可能な給源の データもほとんど報告されていないのが現状である. 今 後、これらのデータベースを作成することによって、第 四紀テフラクロノロジーの対比精度が飛躍的に高まると 期待される.

7. ま と め

今回,著者らは,愛媛県西予市野村町の平野に分布す る第四系から厚層の火山灰層および火山灰質堆積物を見 出し,それらの詳細な記載岩石学的検討,火山ガラスの 屈折率測定,火山ガラスの主要・微量元素分析,斑晶鉱 物の化学組成分析および FT 年代測定を行った.それら の結果に基づき,以下のことが明らかになった.

1) 愛媛県野村町平野の第四紀砂礫層に挟在する平野 火山灰は,再堆積層を含めると,全層厚約6mに達する ガラス質火山灰である.

2) 平野火山灰の記載岩石学的検討,火山ガラスの主 要元素・微量元素分析,およびジルコンのFT年代(0.46 ±0.09 Ma)に基づいて検討した結果,大分県庄内町に主 に分布する中期更新世(約 60 万年前)の由布川火砕流堆 積物に対比されることが明らかになった.

3) 第四紀テフラの給源の解明には、火山ガラスの微 量元素データが極めて有効であり、今後、代表的広域テ フラを中心に微量元素組成のデータベースを作成する必 要がある.

謝 辞

高知大学理学部の奈良正和博士には,野外調査の際に 議論していただいた.福島大学の長橋良隆博士には,AT テフラの試料を分与していただいた.(株)古澤地質調査 事務所の古澤 明博士には,火山ガラスのEDS分析に 関して助言をいただいた.ICP-MS分析に際しては,愛媛 大学総合研究支援センターの倉本 誠博士にお世話に なった.以上の方々に深い感謝の意を表し,ここに記し て謝辞とさせていただく.

引用文献

- 荒牧重雄・原村 寛(1966)火山ガラスの加水に伴う Na2Oの溶脱一実験的研究一.地質雑, 72, 69-73.
- 檀原 徹 (1995) 第四紀テフラの高精度フィッション・ トラック (FT) 年代測定―ジルコンとガラスを用いた 測定法の確立に向けて―. 第四紀研究, 34, 221–237.
- 檀原 徹 (1999) フィッション・トラック法. 松浦秀 治・上杉 陽・藁科哲男編「考古学と年代測定学・地 球科学」, 同成社, 44-55.
- Danhara, T., Iwano, H., Yoshioka, T. and Tsuruta, T. (2003) Zeta calibration values for fission track dating with a diallyl phthalate detector. J. Geol. Soc. Japan, 109, 665–668.
- Deer, W. A., Howie, R. A. and Zussman, J. (1997) Rock-Forming Minerals. Volume 2B, Double-Chain Silicates. Geol. Soc., London, 2nd edition, 764 p.
- Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M. and Handler, M. R. (1997) A simple method for the precise determination of=<40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. *Chem. Geo.*, **134**, 311–326.
- Fisher, R. V. and Schmincke, H. U. (1984) Pyroclastic Rocks. Springer -Verlag, Berlin, 472 p.
- Galbraith, R. F.(1981)On statistical models for fission track counts. *Math. Geol.*, **13**, 471–488.
- Gleadow, A. J. W. (1981) Fission-track dating methods: what are the real alternatives? *Nucl. Tracks*, **5**, 3–14.
- Hart, S. R., Blusztajn, J., Dick, H. J. B., Meyer, P. S. and Muehlenbachs, K. (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. *Geochim. Cosmochim. Acta*, 63, 4059–4080.
- 星住英夫・小野晃司・三村弘二・野田徹郎 (1988) 別府 地域の地質.地域地質研究報告(5万分の1地質図 幅),地質調査所,131 pp.
- Hurford, A. J. (1990a) Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission of Geochronology. *Chem. Geol.*, 80, 171–178.
- Hurford, A. J. (1990b) International Union of Geological Sciences Subcommission on Geochronology recommendation for the standardization of fission track dating calibration and data reporting. *Nucl. Tracks Rad. Meas.*, 17, 233–236.
- 岩野英樹・吉岡 哲・檀原 徹 (2000) フィッション・ トラック法による年代およびウラン濃度算出の再検討: 次世代年代測定システムに向けて.フィッション・ト ラックニュースレター, 13, 1-10.
- 岩崎仁美・榊原正幸 (2001) 愛媛県野村町における段丘 堆積物中のテフラの鉱物科学組成.日本地質学会第 108 年学術大会講演要旨, 234.
- 岩崎仁美・榊原正幸 (2002) 愛媛県野村町周辺における いわゆる Ng-1 テフラの岩石学的特徴. 日本地質学会 第 109 年学術大会講演要旨, 246.

- 岩崎仁美・榊原正幸 (2004) 火山ガラスの EDS による定 量化学分析技術に関する改善点.愛媛大学理学部紀 要,9・10,9-15.
- 鹿島愛彦 (1996) 肱川の形成史と河岸段丘の利用開発に 関する研究報告書.河川整備基金助成事業報告書.
- 鹿島愛彦・満塩大洸 (1996) 愛媛県南部城辺町での 0.82 Ma テフラの発見とその意義. 日本地質学会関西支部 会報 121・西日本支部会報 109, 10.
- 鹿島愛彦・白石邦幸・木村泰久・高橋治郎 (1982) 四国 西部,伊予灘海岸および野村盆地の段丘堆積物よりテ フラ層の発見とその意義.愛媛大学紀要, D, 11, 1− 14.
- 川村教一・篠原俊憲 (2008) 愛媛県西予市宇和盆地宇和 層および中位段丘構成層中の火山灰の層序と対比.地 質雑, 114, 415-425.
- 喜夛佐由里・山本博文・古澤 明 (1999) 姶良 Tn 火山 灰の風化. 地質雑, 105, 6, 410-420.
- 熊原康博 (2002) 四国南西部,僧都川および松田川流域 における中期更新世以降の地形発達と地殻変動.地理 学評論,75,9,553-570.
- 黒川勝巳 (1999) 水底堆積火山灰層の研究法一野外観察 から環境史の復元まで一. 地学団体研究会, 147 pp.
- Leake, B. E. (1978) Nomenclature of amphiboles. *Amer. Mineral.*, **63**, 1023–1052.
- 町田 洋・新井房夫 (1992) 火山灰アトラス一日本列島 とその周辺一.東京大学出版, 276 p.
- 町田 洋・新井房夫 (2003) 新編 火山灰アトラス一日 本列島とその周辺―. 東京大学出版, 336 p.
- 水野清秀 (2001) 瀬戸内海周辺地域に分布する下部,中 部更新統と両者の堆積間隙.日本第四紀学会講演要旨 集,31,58-59.
- 水野清秀・吉川清志 (1991) 中期更新世テフラ, Ng-1火 山灰の広域性の検討.第四紀研究, **30**, 5, 435-438.
- 桃井 斉・鹿島愛彦・高橋治郎 (1991) 愛媛県の地質 第4版20万分の1地質図および説明書.トモエヤ商 事(株),86 p.
- 中村千怜・榊原正幸 (2006) 細粒火山ガラスの EDS によ る定量化学分析技術の開発. 愛媛大学理学部紀要, 12, 39-43.

- 大森博雄 (1990) 四国山地の第四紀地殻変動と地形.大 学テキスト 変動地形学,古今書院,60-86.
- 奥村晃史 (1991) 火山ガラスの主成分組成に基づくテフ ラの対比-EPMA. 月刊地球, 141, 13, 169-173.
- 奥村晃史 (1993) 波長分散型 EPMA 法 (WDS). 第四紀 試料分析法,日本第四紀学会編,177-189.
- Pearce, J. A. and Parkinson, I. J. (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis: In *Magmatic Processes and Plate Tectonics* (Prichard, H. M. et al. eds.), Geol. Soc. Spec. Pub., 76, 373-403.
- Sakakibara M. and Isono Y. (1996) Middle Miocene thermal metamorphism due to the infiltration of hightemperature fluid in the Sanbagawa metamorphic belt, southwest Japan. *Contrib Mineral Petrol*, **125**, 341–358.
- 里口保文・服部 昇 (2008) 中部更新統古琵琶湖層群上 部と上総層群上部の火山灰層の対比.第四紀研究, 47, 15-27.
- 白井正明 (2000) 男鹿半島浅海成堆積物と日本海半遠洋 成堆積物の第四紀氷河性海水準変動への応答.第四 紀, 32, 19-27.
- Sun, S. S. and McDonough, W. F. (1989) In Magmatism in the Ocean Basins. Spec. Pub. Geol. Soc. Lond., 42, 313– 345.
- 竹村恵二・檀原 徹 (1993) 由布川火砕流のフィッショ ン・トラック年代.火山, **38**, 63-66.
- ト部厚志 (1996) 房総半島における更新統豊房層群と上 総層群中・上部の火山灰層による対比.地球科学, 50, 303-314.
- 山北 聡 (1998) 四国西部北部秩父帯のナップ構造の再 検討. 地質雑, 104, 578-589.
- 山下 透・檀原 徹 (1995) 火山ガラスの hydration と superhydration 一日本の広域テフラについて一.フィッ ション・トラックニュースレター, 8, 41-46.
- 吉川周作 (1976) 大阪層群中の火山灰層について.地質 雑, 82, 479-515.

(編集担当 三浦大助)