浅間火山 2004 年 9 月 1 日噴火前後の重力変化

植木貞人*•大久保修平**•大島弘光***•前川徳光***• 孫 文科**•松本滋夫**•小山悦郎**

(2005年4月11日受付, 2005年8月30日受理)

Gravity Change Preceding the 2004 Eruption of Asama Volcano, Central Japan

Sadato UEKI^{*}, Shuhei OKUBO^{**}, Hiromitsu OSHIMA^{***}, Tokumitsu MAEKAWA^{***}, Wenke SUN^{**}, Shigeo MATSUMOTO^{**} and Etsurou KOYAMA^{**}

Asama volcano, one of the most active andesitic volcanoes in central Japan, started a series of eruptions on September 1, 2004 and the eruptive activity lasted about three months. We have carried out microgravity measurements at the volcano three times; one year before, immediately after the eruption and one and a half months later. "Hybrid measurement", combining relative measurements over an area and an absolute measurement at a reference station, was employed to observe temporal changes in absolute gravity value. The data obtained before and after the eruption shows that the gravity changes preceding the eruption are from -6 to +9microgals, which are of the nearly same value as that of the accuracy of observations. The gravity changes predicted from the tensile fault models and Mogi models proposed for the ground deformations are always less than 1 microgal at any gravity station. The observational fact that gravity changes did not exceed 10 microgals gives some constraints on the magma accumulation in the conduit. A numerical examination suggests that the volume of the magma accumulated in one year preceding the eruption may be less than 2×10^7 m³. **Key words**: microgravity, hybrid measurement, Asama volcano, volcanic eruption, magma accumulation

1. はじめに

浅間火山では、2004年9月1日に、山麓へ直径数 cm の火山礫を飛ばす「中規模」の爆発的噴火が発生した (気象庁,2005).噴火活動はその後も継続し、9月14日 ~18日には小噴火の断続的発生が認められたほか、9月 23日、29日、11月14日の中規模爆発をはじめとして、 2004年12月9日までの期間に爆発的噴火が繰り返して 発生した.この間、2004年9月16日には、今回の活動に ともなって新しい溶岩が火口底に流出し、火口底高度が 約100m上昇して海抜2,400m前後に達したことが確認

*	〒980-8578 仙台市青葉区荒巻字青葉						
	東北大学大学院理学研究科地震 · 噴火予知研究観測						
	センター						
	Research Center for Prediction of Earthquakes and						
	Volcanic Eruptions, Graduate School of Science,						
	Tohoku University, Sendai 980-8578, Japan.						
**	〒113-0032 東京都文京区弥生 1-1-1						
	東京大学地震研究所						
	Earthquake Research Institute, University of Tokyo,						
	Tokyo 113-0032, Japan.						

されている (国土地理院, 2005).

2004年の噴火は、広範囲に火山砕屑物を降らせる噴火 としては、1983年4月の噴火以来、21年半ぶりの噴火で ある.この間2000年頃まで火山活動は比較的静穏な状 態にあったが、2000年以降群発地震の発生と噴煙量の増 大が観測されるようになった.2003年には、2月~4月 に、火口周辺に火山礫を飛ばす微噴火が4回発生した.

浅間火山は日本を代表する安山岩質火山であり,歴史 時代に入ってからも大噴火により甚大な災害を引き起こ した活動的な火山である.また,わが国で初めて定常的

Institute of Seismology and Volcanology, Graduate School of Science, Hokkaido University, Sobetu 052– 0106, Japan.

Corresponding author: Sadato Ueki e-mail: ueki@aob.geophys.tohoku.ac.jp

^{*** 〒052-0106} 北海道壮瞥町立香 142 北海道大学大学院理学研究科地震火山研究観測セン ター

地震観測が行われた火山で, 地震学的手法によって最も 詳しく研究されている火山の一つである (例えば, Minakami (1960)). 一方, 重力を用いた研究としては, 1921年と1922年に山本一清が、1936年には水上 武 が,重力偏差計を用いて,噴火前後での重力偏差の時間 変化の観測を試みている (坪井, 1979, P. 248). しかし, 火山活動にともなう重力変化の検出を目的とした組織 的・継続的な観測が行われるのは、小型軽量でドリフト 率が小さい LaCoste & Romberg 社 G 型重力計が測定に 用いられるようになってからである. G型重力計による 重力精密測定は,田島・他 (1978) によって 1976 年 8 月 に初めて行われた. その後, 1977年11月, 1981年10 月, 1982年8月, 1984年10月, 1992年9-10月, 2003年 9月の測定を合わせて計7回実施された(植木・他 (2004)参照). しかし, 1976年以降, 2003年までの期間 に発生した本格的な噴火が1983年4月の1回だけであ り,継続的に測定が繰り返された重力点の数が少ないこ ともあって、これまでのところ火山活動に関連した重力 変化についての議論は行われていない.

われわれは、2003年9月に重力精密測定を実施してい たことから、2004年9月1日の噴火に対応して、噴火直 後の9月上旬と1ヶ月半後の10月下旬に再測定を実施 した.本小論では、はじめに2003年と2004年の重力測 定の結果を示し、噴火前1年間での重力変化を明らかに する.次いで、それに基づいて噴火前のマグマの集積に ついて議論を行う.

2. 測定と測定結果

2-1 測定とデータ処理

われわれは、重力変化の観測から火山活動にともなう 火山下浅部での物質移動を検出することを目的として, 2003年9月25日~27日,2004年9月9日~11日と 2004年10月22日~24日の3回にわたり重力精密測定 を実施した.これら3回の測定では、測定精度の向上を 図るために,基準点での重力変化を観測するための絶対 測定と面的な重力分布を把握するための相対測定を組み 合わせた"ハイブリッド重力測定法"(大久保, 2001)を 採用した。ハイブリッド重力測定法は、基準点において 重力変化が生じている可能性がある場合に、高精度の観 測データを得るために有効な測定法である.本研究で は、長期間の管理のしやすさや測定作業の効率などの観 点から、相対重力測定の基準点を東京大学地震研究所浅 間火山観測所内に設置した(Fig. 1の AVO-FG5). しか し、同所が火口の東約4kmに位置することから、火山活 動によって重力変化が生じる可能性が存在する. このよ うな状況下で信頼できる重力変化データを得るために

は,基準点における高精度の絶対重力測定が不可欠である.

絶対重力測定は、浅間火山観測所資料保管室におい て、相対測定期間に合わせて、毎回、約3日間にわたっ て実施した.測定には、東京大学地震研究所所有の自由 落下方式絶対重力計 Micro-g Solutions 社 FG5 (#109)を 使用した.有効測定回数は、それぞれ、約12,000回であ る.測定値から固体地球潮汐、海洋潮汐ならびに極運動 による重力変化を差し引き、気圧補正を施した後に平均 することにより、床面からの高さ1.30mにおける絶対重 力測定点での重力値を得た.気圧補正係数の不確定さを 考慮すると絶対重力値の精度は1µgal (=10⁻⁸ m/s²)程 度と推定される.床面上にある相対測定基準点(AVO-FG5)の絶対重力値は、重力鉛直勾配の実測値(-311 µgal/m)を用いて計算により求めた.これによって、す べての重力測定点において絶対重力値を得ることがで き、その時間変化を議論することが可能になった.

相対測定は,絶対重力計直下の重力点 AVO-FG5 を基 準点として, Fig. 1 に黒丸で示す 17 点ならびに浅間火 山観測所構内の水準点 BM7000A の計 18 点で実施した. ただし,このうち, BM603, BM606, BM607, ASM3 と ASM4 は 2004 年に追加した測定点である。測定には La-Coste & Romberg 社 G 型重力計を複数台用いた. 2003 年と 2004 年 9 月には,G31,G581,G682 と G705 の 4 台,2004 年 10 月にはこれにG375 を加えた計 5 台であ

Fig. 1. Map showing the distribution of gravity stations on and around Asama volcano, central Japan. Solid circles denote the gravity stations.

る. 複数台の重力計を使用したことから,器差を取り除いて観測精度を向上させるために,各重力計固有の特性に起因する誤差の補正を施した.考慮した誤差要因は,スケール定数の誤差,磁場に対する設置方位に依存する誤差,ならびにギアの偏心に起因する周期的誤差である(中川・他,1987; Valliant, 1991).ドリフトを無視し,スケール定数の誤差をダイヤル値の1次関数と仮定すると,i番目の測定における重力測定値Goiは,真の重力値Gi,ダイヤル値Di,磁北に対する重力計の設置方位Giと偶然誤差eiを用いて,

$Go_i = G_i + AD_i + Bc\cos\theta_i + Bs\sin\theta_i$

 $+\sum_{i} \{C_{j}\cos((2\pi D_{i}/T_{j})) + S_{j}\sin((2\pi D_{i}/T_{j}))\} + e_{i}$

と書ける.ここで,Aはスケール定数の誤差係数,Bcと Bsは設置方位依存性の係数, T_j は周期的誤差の周期, C_j $\geq S_j$ はその誤差係数である.測定値の補正に用いた誤差 係数の値を重力計ごとにTable 1 に示す.これらの係数 は,前川・他 (1996)や植木・他 (2004)によって求めら れた値を採用した.以上の誤差を補正した後,さらに器 高補正と固体地球潮汐補正(潮汐定数 δ =1.2)を施した 重力値を用いて,重力計ごとにドリフト率と各重力点に おける基準点に対する相対重力値を決定した.各重力点 における最終的な相対重力値は、すべての重力計によっ て得られた相対重力値の算術平均によって求めた.

2-2 噴火前後の重力変化

絶対重力測定から求めた基準点 (AVO-FG5) における 重力変化は、2003年9月25~27日と2004年9月9~11 日の約1年間では-0.006 mgal (=10⁻⁵m/s²)、2004年9 月9~11日と10月22~24日の43日間では+0.016 mgal である.なお、後者の重力変化には、2004年10月に日本 付近を通過した台風22号と台風23号にともなう降雨 (10月3日~21日の軽井沢における降水量合計341 mm)が大きく影響していると考えられる (大久保・他、 2005).

2003年9月25日~27日,2004年9月9日~11日と 10月22日~24日の各測定期間に実施した相対重力測定 の結果に、基準点(AVO-FG5)における絶対重力測定の 結果を合わせることによって、それぞれの測定期間での 全重力点における絶対重力値を求めた。その結果を Table 2a~cに示す。各重力点について、絶対重力値、標 準誤差、ならびに、これらを計算するのに使用した個々 の重力計による測定結果を示してある。ただし、重力値 は979,000.000 mgal を引いた、100 mgal 以下の桁の数字 のみを示した。重力値は、すべての重力計による測定値 の平均により求め、標準誤差はこれに対する測定値の分 散から推定した。測定誤差の大きさは0.006 mgal (6 µgal)程度である。

Table 2 に示した測定結果の差をとることによって, すべての重力測定点における重力変化量を,何らの仮定 もなしに求めることができる.重力測定のまとめと,そ れから得られた重力変化量を Table 3 に示す.さらに, 重力変化量の空間分布を Fig. 2a,b に示した.なお, BM 549 と BM10416 は,交通量の多い国道の近くに位置し ているために,地面の雑振動が大きく,得られた結果は 精度が悪いと考えられる.そこで,この2点については, 以下の議論の対象から除くことにする.

噴火1年前の2003年9月から噴火直後の2004年9月 までの期間に得られた重力変化の特徴として以下の点が あげられる.1)重力変化量は -6μ gal~+9 μ galで,いず れも10 μ galより小さい量である.2)絶対重力点を除い て、これらの変化量は先に示した測定誤差と同程度であ り、測定誤差を大きく上回る明確な重力変化は観測され ていない.

一方,噴火開始後の2004年9月上旬と10月下旬の間 の重力差については、1)15µgal以上の,測定誤差を有意 に上回る重力増加が複数の点で観測された (AVO-FG5,

Kind of Error	Coefficient	Gravity Meter				
		G31	G375	G581	G682	G705
Scale Factor Error	A (×10 ⁻³)	-0.03	-0.34	-0.26	-0.42	-0.22
Geomagnetic Field	Bc (mgal)	_	—	—	-0.004	—
Dependency	Bs (mgal)	—	—	—	0.011	—
Periodic Error						
period 7.3 mgal	C1 (mgal)	—	—	—	—	0.0017
	S1	—	—	—	—	0.0061
3.7	C 2	—	—	—	—	-0.0008
	S 2	—	—	—	—	0.0000

Table 1. Coefficients of various kinds of error for the employed G-type gravity meters.

	Gravity	Standard	Observation* by Each Gravity Meter			Meter
Station	Value*	Error	G31_	G581	G682	G705
AVO-FG5	528.312	0.000	528.312	528.312	528.312	528.312
BM7000A	528.453	0.007	528.443	528.451	528.471	528.446
Pt001	526.491	0.004	526.488	526.502	526.490	526.485
Pt003	498.651	0.009	498.667	498.633	498.661	498.641
BM7030	527.972	0.007	527.983	527.966	527.979	527.958
BM7060	540.111	0.009	540.121	540.089	540.124	540.108
BM7100	528.416	0.005	528.406	528.421	528.424	528.411
BM5060	559.232	0.006	559.245	559.221	559.224	559.236
BM5000	552.274	0.003	552.275	552.271	552.268	552.282
BM608	548.192	0.005	548.193	548.203	548.183	548.187
BM10418	597.790	0.008	597.770	597.797	597.791	597.802
BM10416	627.347	0.015	627.327	627.374	627.324	627.364
BM549	619.696	0.008	619.684	619.716	619.691	619.691

Table 2a. Gravity values obtained by the measurements in the period of 25-27 September 2003.

*+979000.000 mgal

AVO-FG5 is the station where an absolute measurement was carried out and the reference station for relative measurements. To obtain absolute gravity values, 979000.000 should be added to the numerals. Unit is mgal $(=10^{-5} \text{ m/s}^2)$ for all the numerals.

Table 2b. Gravity values obtained in 09-11 September 2004.

	Gravity	Standard	Observation* by Each Gravity Meter			Meter
Station	Value*	Error	G31_	G581	G682	G705
AVO-FG5	528.306	0.000	528.306	528.306	528.306	528.306
BM7000A	528.453	0.006	528.447	528.463	528.461	528.441
Pt001	526.500	0.004	526.509	526.498	526.497	526.494
Pt003	498.657	0.011	498.685	498.639	498.652	498.653
BM7030	527.970	0.003	527.972	527.976	527.971	527.962
BM7060	540.115	0.008	540.117	540.095	540.119	540.129
BM7100	528.412	0.003	528.407	528.417	528.416	528.407
BM5060	559.238	0.003	559.245	559.236	559.235	559.236
BM5000	552.281	0.006	552.273	552.296	552.282	552.274
BM608	548.196	0.007	548.211	548.196	548.195	548.180
BM607	552.514	0.008	552.519	552.529	552.511	552.497
BM606	552.517	0.006	552.519	552.527	552.520	552.501
BM603	562.081	0.007	562.065	562.094	562.080	562.084
BM10418	597.796	0.005	597.790	597.808	597.797	597.788
BM10416	627.364	0.006	627.358	627.379	627.360	627.358
BM549	619.707	0.009		619.717	619.711	619.693
ASM4	594.784	0.015	594.752	594.812	594.796	594.777
ASM3	405.911	0.005	405.914	405.912	405.918	405.899

^{*+979000.000} mgal

	Gravity	Standard	Observation* by Each Gravity Meter			r	
Station	Value*	Error	G31_	G375	G581	G682	G705
AVO-FG5	528.322	0.000	528.322	528.322	528.322	528.322	528.322
BM7000A	528.468	0.003	528.463	528.472	528.468	528.475	528.463
Pt001	526.504	0.011		526.522	526.518	526.483	526.492
Pt003	498.678	0.003	498.676	498.685	498.675		498.674
BM7030	527.980	0.004	527.968	527.984	527.990	527.977	527.982
BM7060	540.136	0.005	540.128	540.138	540.122	540.147	540.145
BM7100	528.437	0.005		528.445	528.438	528.441	528.425
BM5060	559.239	0.005	559.242	559.252	559.238	559.238	559.226
BM5000	552.292	0.006	552.281	552.302	552.302	552.296	552.279
BM608	548.204	0.003	548.204	548.205	548.208	548.208	548.193
BM607	552.537	0.011	552.566	552.538	552.541	552.536	552.506
BM606	552.525	0.007	552.530	552.515	552.526	552.545	552.508
BM603	562.097	0.005	562.089	562.104	562.108	562.098	562.085
BM10418	597.795	0.008	597.776	597.812	597.813	597.783	597.791
BM10416	627.350	0.008	627.330	627.365	627.368	627.340	627.349
BM549	619.700	0.007	619.692	619.694	619.716	619.714	619.685
ASM4	594.789	0.006	594.777	594.785	594.809	594.792	594.783
ASM3	405.919	0.004	405.913	405.932	405.914	405.924	405.912

Table 2c. Gravity values obtained in 22-24 October 2004.

*+979000.000 mgal

Pt003, BM7060, BM7100, BM603, BM607). 中でも, Pt003, BM607, BM7060 と BM7100 では, 20μgal 以上 の大きな増加量である. 2) これらの 15μgal 以上の重力 増加が観測された重力点は,いずれも山腹にあり,斜面 の傾斜が急傾斜から緩傾斜に変わる地点付近に位置して いる. 10 月の測定の前には,先に述べたように,台風の 通過にともなって積算雨量が 300 mm を超える降水があ り,その影響が絶対重力計によって観測されていること から (大久保・他, 2005),複数測定点における 15μgal を超える大きな重力増加の原因は,多量の降水による地 下水量の増加であり,ほとんどが火山活動とは関係がな いものと解釈できる.

3. 議 論

以下では、前節で示した重力測定結果のうち、噴火前 のマグマの蓄積過程を反映している可能性がある 2003 年9月~2004年9月の重力変化について議論する.

絶対重力測定の精度は相対測定に比べて数倍以上良い ことや, BM7100における各重力計による測定値の分散 が比較的小さいことを考慮すると, Fig. 2 (a)に示され ている噴火前後1年間における重力変化の空間分布は, 東山腹と北山腹で負であり,北東山腹で正の規則的な地 域分布をしているようにも見える.しかし,変化量はい ずれも10µgal以下の小さな量であり,約6µgal程度と 推定される測定誤差と比較すると,有意な地域分布とは 断言しがたい.さらに,火口の西側に観測データがない ことをも考慮して,重力変化の空間分布から重力変動源 を求めることは断念することとした.これに代わって, 以下では,噴火前後に観測された地盤変動や地震活動か ら推定されているマグマ供給系におけるマグマの蓄積に ついて,観測された重力変化との関係を議論する.

3-1 地盤変動源から期待される重力変化

噴火に先行した地殻深部から浅間火山下浅部へのマグ マの供給については,主として,GPS 観測や光波辺長測 量などにより捉えられた地盤変動に基づいて,いくつか のモデルが提案されている(Table 4 上段, Fig. 3). 青 木・他 (2005)は、2004 年 7 月 ~ 2005 年 3 月の GPS 観 測データに基づいて,火口の西北西約 6 km の海水面下 3 km 付近を中心としてほぼ垂直なダイク(体積 6.8×10⁶ m³)が貫入したとしている.一方,国土地理院(2004) は、国土地理院の GPS 観測に基づいて、2004 年 4 月こ ろから地殻の伸張が始まり、7 月下旬にさらに新たな変 動が加わったとし、火口の西北西約 8 km の海水面下 3.5 km 付近での南西に傾斜した開口断層の膨張(体積 2.4×

Table 3. Summary of the gravity measurements in September, 2003 (a), September, 2004 (b) and October, 2004 (c), and the differences between the observations in September, 2003 and September, 2004 (d), and in September and October, 2004 (e). Unit is mgal for all the numerals.

	(Gravity Value	Differ	Difference	
Station	a)Sep.2003	b)Sep.2004	c)Oct.2004	d) b-a	e) c-b
AVO-FG5	528.312	528.306	528.322	-0.006	0.016
BM7000A	528.453	528.453	528.468	0.000	0.015
Pt001	526.491	526.500	526.504	0.009	0.004
Pt003	498.651	498.657	498.678	0.006	0.021
BM7030	527.972	527.970	527.980	-0.002	0.010
BM7060	540.111	540.115	540.136	0.004	0.021
BM7100	528.416	528.412	528.437	-0.004	0.025
BM5060	559.232	559.238	559.239	0.006	0.001
BM5000	552.274	552.281	552.292	0.007	0.011
BM608	548.192	548.196	548.204	0.004	0.008
BM607		552.514	552.537		0.023
BM606		552.517	552.525		0.008
BM603		562.081	562.097		0.016
BM10418	597.790	597.796	597.795	0.006	-0.001
BM10416	627.347	627.364	627.350	0.017	-0.014
BM549	619.696	619.707	619.700	0.011	-0.007
ASM4		594.784	594.789		0.005
ASM3		405.911	405.919		0.008

^{*}+979000.000 mgal

Fig. 2. Distribution of gravity changes (a) obtained from the observations on 25–27 September 2003 and 09–11 September 2004, and (b) those on 09–11 September and 22–24 October 2004. Unit is microgal (=10⁻⁸ m/s²).

Table 4. Various source models proposed for geodetic observations (top) and gravity values calculated from the models (bottom: dGcala). For the source models, locations measured from the crater, depths below sea level of the centers and volume changes (dV) are presented. Gravity values are in microgal.

Source Model	Dike ¹⁾	Dike & Sill ²⁾	2 Mogi Models ³⁾
Location [*]	6 km WNW	8km WNW, 5 km W	0, 0 km
Depth (bsl)	3 km	3.5, 2.5 km	0.2,-2.2 km
dV (km ³)	6.8	2.4, 0.4	0.2, 0.09
Station	dGcalc	dGcalc	dGcalc
AVO-FG5	-0.4	-0.1	-0.3
Pt001	-0.4	-0.2	-0.4
Pt003	-0.4	-0.2	-0.8
BM7030	-0.4	-0.1	-0.3
BM7060	-0.4	-0.2	-0.4
BM7100	-0.5	-0.2	-0.5
BM5060	-0.4	-0.1	-0.2
BM5000	-0.3	-0.1	-0.1
BM608	-0.4	-0.1	-0.3
BM10418	-0.4	-0.1	-0.1

*Horizontal distance from the crater

¹⁾Aoki et al.(2005), ²⁾GSI(2004), ³⁾MRI et al.(2004)

Fig. 3. Source models for ground deformations and the assumed conduit (shaded area) projected onto a E-W vertical cross section running through the summit. Gravity changes caused by Dike 1 (Aoki *et al.*, 2005), Dike 2 and Sill (GSI, 2004), Mogi sources 1 and 2 (MRI *et al.*, 2004) are evaluated. The distribution of magma accumulated in the conduit without significant gravity changes are also examined. Mogi sources 3 and 4 are after Miyazaki (1990).

 10^6 m^3) と、火口の西約 5 km の海水面下 2.5 km 付近での シル(体積 $0.4 \times 10^6 \text{ m}^3$)の形成という、2 変動源モデル を提唱した.さらに、気象研究所・他 (2004) は、繰り返 し GPS 測量と光波辺長測量の結果を説明するために、 ほぼ火口の直下の海水面下 200 m で $2.0 \times 10^5 \text{ m}^3$ の、海抜 2,200 m で $9 \times 10^4 \text{ m}^3$ の等方的な体積増加(茂木モデル) を考えた.

以上の地盤変動源に蓄積されたマグマから期待される 重力変化と実際に観測された重力変化との関係について 検討する.開口断層の形成にともなう重力変化について は Okubo (1992)の式により、等方膨張源(茂木モデル) の変動による重力変化については萩原(1977)の式に よって計算した.ただし、簡単のために、弾性定数につ いて $\lambda = \mu \epsilon G c c$ し、密度は周辺媒質も貫入物質(マグ マ)も等しく 2,400 kg/m³とした.ここで用いた式は、い ずれも、半無限媒質の中に変動源があり観測点が表面に ある場合に対して得られたものである.そこで、変動源 の深さを測定点標高から計測することによって、測定点 の標高の違いを考慮した.ただし、海抜 2,200 m の等方 膨張源の場合に限り、山頂と測定点を含む平面からの距 離を変動源の深さとした.

上記の変動源モデルから計算された各重力点における 重力変化量を Table 4 下段 (dGcalc) に示す.いずれのモ デルについても、モデルから期待される重力変化は、全 点において隆起に対応した重力減少であり、変化量は 0.8µgal以下の微小な量である.このことは、測定誤差を 大きく超えた明瞭な重力変化が観測されなかったことと 矛盾しない.

3-2 火道内に集積されたマグマ

地盤変動をともなうマグマの貫入・集積に起因する重 力変化は、前節で見たように、測定誤差より1桁ほど小 さく無視できることがわかった.他方、1986年伊豆大島 噴火や2000年三宅島噴火では、明瞭な地盤変動をとも なわずに火道内にマグマが充填されたり、マグマの逆流 によって火道内に空洞が生じたりしたことが、重力測定 から示されている (Furuya et al., 2003; Watanabe et al., 1998).そこで、本節では、浅間山2004年噴火に先行し て地盤変動をともなわないマグマの集積が火道内であっ たと仮定して、マグマの形状や量に関して重力測定の結 果からどのような制約が可能であるかについて検討す る.

浅間火山の火道について,青木・他(2005)は、山本・ 他(2005)によって精密に決定された2004年9月~2005 年1月の震源分布に基づき、火口から海水面下1,000m 付近までまっすぐ下に伸びており、その底部で西方のダ イクにつながっているとする考えを提案した.他方、宮 崎(1990)は、1930年代から1981年までに実施された水 準測量の資料を整理して、火口直下の海水準付近と、そ の西方約2kmの海水面下5km付近の2箇所に圧力源の 存在を推定した.この二つの圧力源は、マグマ供給路に よって結ばれていると考えられた. 以上の研究成果を参考にして、ここでは、簡単のため に、火道は火口直下から海水面下 5 km まで垂直に伸び ていると仮定する。火道内には深部からマグマが供給さ れて集積したとする。以下では、火道内に集積したマグ マの引力による重力変化量が、どの観測点においても 10 μ gal, あるいは 5 μ gal の測定誤差を超えないという条件 で、マグマの形状と集積量の上限値を推定する。

火道内に集積したマグマを密度一定の円柱で近似し て、その半径を30m間隔で0~150m,底部の標高を500 m間隔で-5.0km~2.2km,円柱の高さを200m間隔で 0.0~7.2kmの範囲で変えて(ただし、頭位が2,420mを 超えないとする)、マグマ柱の有無による各測定点での 重力変化量を求めた、円柱による重力への寄与の計算に は Singh (1977)の式を用いた、マグマの密度はここでも 2,400kg/m³と仮定した.

計算結果から、最大重力変化量が10あるいは5µgal 以下という条件下で、マグマ柱の半径、底面の標高、高 さの3パラメーターの間にはさまざまな組み合わせが存 在し、個々のパラメーターの値は、仮定した範囲のすべ ての値をとり得ることがわかった。しかし、マグマ柱の 半径と高さの組み合わせについては、条件を満足する組 み合わせは限られる. Fig.4に、マグマ柱の底部の高さ (Zb)あるいは上面の高さ(Zt)を与えた場合の、条件を 満足する半径と高さの組み合わせの範囲を示す.ここ で、黒点は重力変化量が10µgal以下、白丸は5µgal以下 の組み合わせを表す. Fig.4aは底面を最も深い海水面下 5kmとした場合、Fig.4bはマグマ柱の上面が海抜2.4 kmの火口底直下に達している場合である。いずれの場

Fig. 4. Pairs of radius and height of magma columns which cause gravity changes less than 0.010 mgal (dot) or 0.005 mgal (open circle) at all the gravity stations. The magna column is assumed to represent the magma accumulated in the conduit within the one-year period preceding the eruption. Zb and Zt are the elevations of the bottom and top of a magma column, respectively. (a) Zb is assumed to be -5.0 km, (b) Zt to be 2.4 km and (c) Zt to be 0.6 km.

合にも条件を満足するのは、ほとんどが、半径 30 m のと きである. 半径が 30 m であれば、マグマ柱の高さが約4 km であっても、最大重力変化量は 5 μgal を超えない. 他方、海抜 0.6 km~2.4 km にマグマ柱がある場合 (Fig. 4b で Height=1.8 km のとき)には、半径が 150 m であっ ても測定誤差を超える重力変化が観測されないこともわ かる.

Okubo et al. (2005) は、絶対重力値の時間変化と表面 現象の対応に基づいて、 2004 年 9 月 10 日ころのマグマ 頭位を海抜約 600 m と見積もっている. マグマ柱上端 (Zt)を海抜 600 m としたときの半径と高さの組み合わ せを Fig. 4c に示す. この場合にも, マグマ柱の半径が 30m以下であれば、青木・他 (2005)の火道・ダイク接 合部や宮崎 (1990) の浅い圧力源の深さに相当する海水 面下 1.8 km 付近から伸びた高さ 2.4 km のマグマ柱でも 重力変化量は 5μgal を超えることはなく、観測事実を満 足する. なお, Okubo et al. (2005) は, マグマ頭位の見積 もりにおいて、半径 150 m, 空隙率 33% の火道を密度 2,670 kg/m³のマグマが満たしたと仮定している.これ は、われわれの計算では、半径が約90mのマグマ柱に相 当する. Fig. 4c によれば, 半径 90 m の場合に, 観測事実 を満足するマグマ柱の高さは400m以下(海抜200-600 mまたは400-600m)となる.しかし,火道内部の空隙率 は浅部で大きく深部で小さいことも考えられるので、わ れわれのデータのみからマグマ柱の半径や高さを決定す ることは困難である.

以上のように,現有の重力測定データからは,噴火前 に集積したマグマの形状や,特に,位置について制約を

Fig. 5. Frequency distribution of the volumes of magma columns which cause gravity changes less than 0.005 (solid line) or 0.010 mgal (thin line) at any station.

与えることが困難である.しかし、体積についてはとり 得る値は限られる. Fig. 5 には、最大重力変化量が 10 な いし 5 μ gal 以下となるパラメーターの組み合わせについ て、マグマ柱体積の出現頻度を表してある. 細線と太線 が最大重力変化が 10 μ gal 以下と 5 μ gal 以下の場合の度 数を示す.5 μ gal 以下の場合にはほとんどが体積 10× 10⁶ m³以下であり、10 μ gal の場合には 21×10⁶ m³以下で ある.

以上の計算結果から、観測データからは噴火前1年間 に火道内に蓄積されたマグマの形状や位置についてユ ニークな解は得られないが、この間10µgalを超える重 力変化が観測されなかった観測事実は、火道内に2×10⁷ m³を超えるマグマの集積はなかったことを意味すると 言えよう.一連の噴火で地表に噴出されたマグマの総量 は2×10⁶ m³と見積もられている(中田・他,2005).そ の10倍以上のマグマの蓄積はなかったと言える.

火道内に蓄積されたであろうマグマの形状を決めるた めには、より火口に近い測定点でのデータが必要であ る.例えば、Fig. 4bの高さ1.8km、半径150mのマグマ 柱の場合には、火口の東南東1.6km付近にある富士見 坂地震観測点では約160µgalの重力変化が期待でき、同 じ高さで半径30mの場合の7µgalとは明確に区別が可 能である.したがって、火道内のマグマの分布を正確に 捉えるためには、富士見坂観測点などのような火口に近 いところで測定データを得る必要がある.

4. まとめ

われわれは、2004年9月1日の浅間火山噴火に対応し て、直後の9月9日~11日に、同火山地域において重力 精密測定を実施した。その結果を1年前の2003年9月 25日~27日の測定結果と比較することによって、噴火 前後1年間に生じた重力変化の空間分布を求めた。"ハ イブリッド測定"を実施し、相対測定に使用した各重力 計の誤差を補正した結果、各測定点において測定誤差6 µgal程度の精度で絶対重力値の時間変化を明らかにす ることができた。

噴火前後1年間での重力変化は、東山腹と北山腹で負 で、北東山腹で正の地域分布をしているようにも見え る.しかし、変動量はいずれも10µgal以下で、測定誤差 と大きく変わらない量であることから、有意な地域分布 とは断定しがたい.

種々の地盤変動から求められている,噴火に先行する 火山地域浅部へのマグマの供給・蓄積に関するモデルに ついて,観測された重力変化との関係を検討した.いず れの地盤変動モデルについても,モデルから期待される 各重力点における重力変化量は,観測値より1桁小さい ものであった.

精密な震源分布と火山活動が活発であった時期の圧力 源の分布をもとにして、火口から海水面下 5 km まで垂 直に伸びる火道を仮定し、噴火前の1年間にそこへ蓄積 されたマグマについて重力変化から制約することを試み た. 10 μgal 以上の重力変化が観測されていないことか ら、火道中に集積したマグマの体積は 2×10⁷ m³を超え ないと言える.

浅間火山の今後の火山活動を予測するためには、更な るマグマの供給があるのか、あるいはマグマの逆流が生 じるのかを見極めることが重要である.そのためには、 測定点を山上の火口付近に増設して、重力測定を繰り返 すことが必要である.

謝 辞

査読者の東京大学渡辺秀文教授ならびに京都大学石原 和弘教授よりいただいたご意見は本稿を改善するうえで 大変有益でした.大倉敬宏編集委員には原稿の不備を指 摘していただきました.観測経費の一部は文部科学省科 学研究費補助金特別研究促進費(代表者東京大学中田節 也教授,番号 1680002)によってまかなわれました.記し て感謝の意を表します.

引用文献

- 青木陽介・渡辺秀文・小山悦郎・及川 純・森田裕一 (2005) 2004-2005 年浅間山火山活動に伴う地殻変動. 火山, 50 (印刷中).
- Furuya, M., Okubo, S., Sun, W., Tanaka, Y., Oikawa, J., Watanabe, H. and Maekawa, T. (2003) Spatiotempral gravity changes at Miyakejima Volcano, Japan: caldera collapse, explosive eruptions and magma movement. J. Geophys. Res., 108, 10.1029/2002JB001989.
- 萩原幸男 (1977) 伊豆半島の異常隆起を説明する茂木モ デルとそれに伴う重力変化. 震研彙報, 52, 301-309.
- 気象庁 (2005) 浅間山. 平成 16 年 12 月地震火山月報 (防 災編), 33-38, 気象庁.
- 気象研究所・軽井沢測候所・気象庁 (2004) 浅間山.第 99 回火山噴火予知連絡会資料,気象庁.
- 国土地理院 (2004) 浅間山の期間ごとのマグマモデル. 第 99 回火山噴火予知連絡会資料,気象庁.
- 国土地理院 (2005) 航空機搭載型合成開口レーダーによ る浅間山火口底の観測結果.第100回火山噴火予知連 絡会資料,気象庁.
- 前川徳光・植木貞人・渡辺秀文・大久保修平・沢田宗久 (1996) 草津白根山・浅間山周辺の重力精密測定(1992 年9月28日~10月3日).第3回草津白根山の集中総

合観測報告書, 45-52.

- Minakami, T. (1960) Fundamental research for predicting volcanic eruptions, Part 1. Bull. Earthq. Res. Inst., 38, 497–544.
- 宮崎 務 (1990) 水準測量によって明らかにされた日本 の活動的火山の地殻変動. 震研彙報, 65, 665-807.
- 中田節也・吉本充宏・小山悦郎・辻 浩・卜部 卓 (2005) 浅間山 2004 年噴火と過去との噴火の比較によ る活動評価、火山, 50, 303-313.
- 中川一郎・志知龍一・中井新二・中村佳重郎・東 敏 博・李 瑞浩・陳 益恵・王 東初 (1987) 日中国際 重力結合 (I) ーラコステ重力計 (G型)による重力値 の精密決定一.測地学会誌, 33, 185-204.
- Okubo, S. (1992) Potential and gravity changes due to shear and tensile faults in a half-space. J. Geophys. Res., 97, 7137–7144.
- 大久保修平 (2001) ハイブリッド重力測定で追う,地 震・火山活動,2000 年三宅島火山活動と伊豆諸島群発 地震活動,地震ジャーナル,**31**,47-58.
- Okubo, S., Ohminato, T., Hirabayashi, J., Kazahaya, K., Mori, T., Matsumoto, S., Koyama, E. and Sun, W. (2005) Gravity changes as a predictor of volcanic eruption. Science (Submitted).
- 大久保修平・孫 文科・松本滋夫・風間卓仁 (2005) 絶 対重力連続観測でマグマの動きを診る〜火山噴火予知 を目指して〜. 2005 年度地球惑星関連学会合同大会予 稿集, V055-006.
- Singh, S. K. (1977) Gravitational attraction of a vertical right circular cylinder. *Geophys. J. R. astr. Soc.*, 50, 243– 246.
- 田島広一・下鶴大輔・大島弘光・横山 泉 (1978) 浅 間・草津白根山周辺の重力異常と重力精密測定. 震研 彙報, **53**, 509-522.
- 坪井忠二 (1979) 重力, 第 2 版. 岩波全書, 1400, 岩波書 店, 274 P.
- 植木貞人・大久保修平・大島弘光・前川徳光・須藤靖 明・孫 文科・小山悦郎 (2004) 草津白根火山・浅間 火山地域における重力精密測定(2003 年 9 月). 第 4 回草津白根火山の集中総合観測報告書(平成 15 年 7 月~11 月), 37-47.
- Valliant, H.D. (1991) Gravity meter calibration at La-Coste and Romberg. *Geophysics*, 56, 705–711.
- Watanabe, H., Okubo, S., Sakashita, S. and Maekawa, T. (1998) Drain-back process of basaltic magma in the summit conduit detected by microgravity observation at Izu-Oshima volcano, Japan. *Geophys. Res. Lett.*, 25, 2865–2868.
- 山本眞紀・武尾 実・大湊隆雄 (2005) 2004 年浅間山噴 火に先行する長周期地震活動と群発地震活動.地球惑 星関連学会 2005 年合同大会, V055-002.

(編集担当 大倉敬宏)